Expectation of the largest bet size in the Labouchere system

Autor: Yanjun Han, Guanyang Wang
Rok vydání: 2019
Předmět:
Zdroj: Electron. Commun. Probab.
ISSN: 1083-589X
DOI: 10.1214/19-ecp220
Popis: For the Labouchere system with winning probability $p$ at each coup, we prove that the expectation of the largest bet size under any initial list is finite if $p>\frac{1} {2}$, and is infinite if $p\le \frac{1} {2}$, solving the open conjecture in [6]. The same result holds for a general family of betting systems, and the proof builds upon a recursive representation of the optimal betting system in the larger family.
Databáze: OpenAIRE