Optimal online control for sleep mode in green base stations

Autor: Louai Saker, Tijani Chahed, Salah Eddine Elayoubi, Arshad Ali, Richard Combes
Přispěvatelé: Laboratoire des signaux et systèmes (L2S), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Supélec Sciences des Systèmes (E3S), Ecole Supérieure d'Electricité - SUPELEC (FRANCE), Orange Labs [Issy les Moulineaux], France Télécom, Laboratory of Information, Network and Communication Sciences (LINCS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Mines-Télécom [Paris] (IMT), Méthodes et modèles pour les réseaux (METHODES-SAMOVAR), Services répartis, Architectures, MOdélisation, Validation, Administration des Réseaux (SAMOVAR), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP)-Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), Département Réseaux et Services de Télécommunications (TSP - RST), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), Centre National de la Recherche Scientifique (CNRS), Département Réseaux et Services de Télécommunications (RST)
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: Computer Networks
Computer Networks, 2015, 78, pp.140-151. ⟨10.1016/j.comnet.2014.10.031⟩
Computer Networks, Elsevier, 2015, 78, pp.140-151. ⟨10.1016/j.comnet.2014.10.031⟩
ISSN: 1389-1286
Popis: International audience; In this paper, we investigate network sleep mode schemes for reducing energy consumption of radio access networks. We first propose, using Markov Decision Processes (MDPs), an optimal controller that associates to each traffic an activation/deactivation policy that maximizes a multiple objective function of the Quality of Service (QoS) and the energy consumption. We focus on a practical implementation issue, namely ping-pong effect resulting in unnecessary ON/OFF oscillations, that may affect the stability of the system. We illustrate our results numerically using theoretical models of the radio access network, and apply the developed mechanisms on a large-scale network simulator. Knowing that an offline optimization is not suitable for a large-scale network nor does it fit all traffic configurations, we propose, using an online controller that derives dynamically the optimal policy based on the dynamics of users in the cell. The design of our online controller is based on a simple ∊-greedy algorithm and learns the optimal threshold policy for activation/deactivation of network resources.
Databáze: OpenAIRE