Zoll and Tannery Metrics from a Superintegrable Geodesic Flow
Autor: | Galliano Valent |
---|---|
Rok vydání: | 2014 |
Předmět: |
Mathematics - Differential Geometry
Class (set theory) Pure mathematics Closed manifold Property (philosophy) Nonlinear Sciences - Exactly Solvable and Integrable Systems Complex system FOS: Physical sciences Statistical and Nonlinear Physics Mathematical Physics (math-ph) Mathematics::Geometric Topology Differential Geometry (math.DG) FOS: Mathematics Geodesic flow Canonical form Mathematics::Differential Geometry Exactly Solvable and Integrable Systems (nlin.SI) Mathematical Physics Orbifold Mathematics |
Zdroj: | Letters in Mathematical Physics. 104:1121-1135 |
ISSN: | 1573-0530 0377-9017 |
DOI: | 10.1007/s11005-014-0712-3 |
Popis: | We prove that for Matveev and Shevchishin superintegrable system, with a linear and a cubic integral, the metrics defined on S^2 and on Tannery's orbifold T^2 are either Zoll or Tannery metrics. Comment: 13 pages, no figure |
Databáze: | OpenAIRE |
Externí odkaz: |