Event Clustering & Event Series Characterization on Expected Frequency

Autor: Hendrik F. Hamann, Marcus Freitag, Siyuan Lu, Conrad M. Albrecht, Theodore G. Van Kessel
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: IEEE BigData
Popis: We present an efficient clustering algorithm applicable to one-dimensional data such as e.g. a series of timestamps. Given an expected frequency $\Delta T^{-1}$, we introduce an $\mathcal{O}(N)$-efficient method of characterizing $N$ events represented by an ordered series of timestamps $t_1,t_2,\dots,t_N$. In practice, the method proves useful to e.g. identify time intervals of "missing" data or to locate "isolated events". Moreover, we define measures to quantify a series of events by varying $\Delta T$ to e.g. determine the quality of an Internet of Things service.
Databáze: OpenAIRE