A holographic principle for the existence of imaginary Killing spinors

Autor: Sebastián Montiel, Oussama Hijazi, Simon Raulot
Přispěvatelé: Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Universidad de Granada (UGR), Laboratoire de Mathématiques Raphaël Salem (LMRS), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Mathematics - Differential Geometry
Positive Mass Theorem
Imaginary Killing spinors
General Physics and Astronomy
Dirac Operator
Dirac operator
01 natural sciences
symbols.namesake
[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM]
Quantum mechanics
0103 physical sciences
FOS: Mathematics
Immersion (mathematics)
0101 mathematics
Mathematical Physics
Mathematics
Mathematical physics
Spinor
Mean curvature
Differential Geometry
Global Analysis
53C27
53C40
53C80
58G25

010308 nuclear & particles physics
Hyperbolic space
010102 general mathematics
Asymptotically Hyperbolic manifolds
Manifolds with Boundary
16. Peace & justice
Differential Geometry (math.DG)
[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]
Isospin
Killing spinor
Rigidity
symbols
Geometry and Topology
Mathematics::Differential Geometry
Scalar curvature
Zdroj: Journal of Geometry and Physics
Journal of Geometry and Physics, Elsevier, 2015, 91, pp.12-28. ⟨10.1016/j.geomphys.2015.01.012⟩
ISSN: 0393-0440
DOI: 10.1016/j.geomphys.2015.01.012⟩
Popis: Suppose that $\Sigma=\partial\Omega$ is the $n$-dimensional boundary, with positive (inward) mean curvature $H$, of a connected compact $(n+1)$-dimensional Riemannian spin manifold $(\Omega^{n+1},g)$ whose scalar curvature $R\ge -n(n+1)k^2$, for some $k\textgreater{}0$. If $\Sigma$ admits an isometric and isospin immersion $F$ into the hyperbolic space ${\mathbb{H}^{n+1}\_{-k^2}}$, we define a quasi-local mass and prove its positivity as well as the associated rigidity statement. The proof is based on a holographic principle for the existence of an imaginary Killing spinor. For $n=2$, we also show that its limit, for coordinate spheres in an Asymptotically Hyperbolic (AH) manifold, is the mass of the (AH) manifold.
Comment: in Journal of Geometry and Physics, Elsevier, 2015
Databáze: OpenAIRE