Arboricity: An acyclic hypergraph decomposition problem motivated by database theory

Autor: Lijun Ji, Anthony K. H. Tung, Yeow Meng Chee, Andrew Lim
Přispěvatelé: School of Physical and Mathematical Sciences
Rok vydání: 2012
Předmět:
Zdroj: Discrete Applied Mathematics. 160:100-107
ISSN: 0166-218X
DOI: 10.1016/j.dam.2011.08.024
Popis: The arboricity of a hypergraph HH is the minimum number of acyclic hypergraphs that partition HH. The determination of the arboricity of hypergraphs is a problem motivated by database theory. The exact arboricity of the complete kk-uniform hypergraph of order nn is previously known only for k∈{1,2,n−2,n−1,n}k∈{1,2,n−2,n−1,n}. The arboricity of the complete kk-uniform hypergraph of order nn is determined asymptotically when k=n−O(log1−δn)k=n−O(log1−δn), δδ positive, and determined exactly when k=n−3k=n−3. This proves a conjecture of Wang (2008) [20] in the asymptotic sense.
Databáze: OpenAIRE