Arboricity: An acyclic hypergraph decomposition problem motivated by database theory
Autor: | Lijun Ji, Anthony K. H. Tung, Yeow Meng Chee, Andrew Lim |
---|---|
Přispěvatelé: | School of Physical and Mathematical Sciences |
Rok vydání: | 2012 |
Předmět: |
Discrete mathematics
Hypergraph Steiner triple system Mathematics::Combinatorics Conjecture Quantitative Biology::Neurons and Cognition Applied Mathematics Arboricity Hypergraph decomposition Packing Combinatorics Steiner quadruple system Steiner system Acyclic database schema Computer Science::Discrete Mathematics Discrete Mathematics and Combinatorics Partition (number theory) Database theory Acyclic hypergraph Computer Science::Distributed Parallel and Cluster Computing Decomposition problem Mathematics |
Zdroj: | Discrete Applied Mathematics. 160:100-107 |
ISSN: | 0166-218X |
DOI: | 10.1016/j.dam.2011.08.024 |
Popis: | The arboricity of a hypergraph HH is the minimum number of acyclic hypergraphs that partition HH. The determination of the arboricity of hypergraphs is a problem motivated by database theory. The exact arboricity of the complete kk-uniform hypergraph of order nn is previously known only for k∈{1,2,n−2,n−1,n}k∈{1,2,n−2,n−1,n}. The arboricity of the complete kk-uniform hypergraph of order nn is determined asymptotically when k=n−O(log1−δn)k=n−O(log1−δn), δδ positive, and determined exactly when k=n−3k=n−3. This proves a conjecture of Wang (2008) [20] in the asymptotic sense. |
Databáze: | OpenAIRE |
Externí odkaz: |