Random Planar Lattices and Integrated SuperBrownian Excursion
Autor: | Philippe Chassaing, Gilles Schaeffer |
---|---|
Přispěvatelé: | Institut Élie Cartan de Nancy (IECN), Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'informatique de l'École polytechnique [Palaiseau] (LIX), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Applying discrete algorithms to genomics (ADAGE), INRIA Lorraine, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Gardy, D. and Mokkadem, A., Chauvin, B. and Flajolet, P., and Gardy, D. and Mokkadem, A. |
Jazyk: | angličtina |
Rok vydání: | 2004 |
Předmět: |
Statistics and Probability
distances [INFO.INFO-OH]Computer Science [cs]/Other [cs.OH] [PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] FOS: Physical sciences MSC: 05C80 (Primary) 60C05 (Secondary) 01 natural sciences Combinatorics 010104 statistics & probability symbols.namesake serpent brownien Planar Probability theory Mathematics::Probability [MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] FOS: Mathematics Mathematics - Combinatorics 0101 mathematics Connection (algebraic framework) distance diameter Scaling Mathematical Physics Mathematics brownian snake random maps Probability (math.PR) 010102 general mathematics Excursion triangulations Mathematical Physics (math-ph) 05C80 (Primary) 60C05 (Secondary) arbres trees Radius Planar graph [MATH.MATH-PR]Mathematics [math]/Probability [math.PR] cartes aléatoires Hausdorff dimension symbols [MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] Combinatorics (math.CO) Statistics Probability and Uncertainty Mathematics - Probability Analysis diamètre |
Zdroj: | Probability Theory and Related Fields Probability Theory and Related Fields, Springer Verlag, 2004, 128(2), pp.161-212. ⟨10.1007/s00440-003-0297-8⟩ [Intern report] A02-R-215 || chassaing02a, 2002, 44 p Mathematics and Computer Science II ISBN: 9783034894753 Probability Theory and Related Fields, 2004, 128(2), pp.161-212. ⟨10.1007/s00440-003-0297-8⟩ Colloquium on Mathematics and Computer Science: Algorithms, Trees, Combinatorics and Probabilities Colloquium on Mathematics and Computer Science: Algorithms, Trees, Combinatorics and Probabilities, Gardy, D. and Mokkadem, A., Sep 2002, Versailles, France, pp.123--141 |
ISSN: | 0178-8051 1432-2064 |
Popis: | In this paper, a surprising connection is described between a specific brand of random lattices, namely planar quadrangulations, and Aldous' Integrated SuperBrownian Excursion (ISE). As a consequence, the radius r_n of a random quadrangulation with n faces is shown to converge, up to scaling, to the width r=R-L of the support of the one-dimensional ISE. More generally the distribution of distances to a random vertex in a random quadrangulation is described in its scaled limit by the random measure ISE shifted to set the minimum of its support in zero. The first combinatorial ingredient is an encoding of quadrangulations by trees embedded in the positive half-line, reminiscent of Cori and Vauquelin's well labelled trees. The second step relates these trees to embedded (discrete) trees in the sense of Aldous, via the conjugation of tree principle, an analogue for trees of Vervaat's construction of the Brownian excursion from the bridge. From probability theory, we need a new result of independent interest: the weak convergence of the encoding of a random embedded plane tree by two contour walks to the Brownian snake description of ISE. Our results suggest the existence of a Continuum Random Map describing in term of ISE the scaled limit of the dynamical triangulations considered in two-dimensional pure quantum gravity. 44 pages, 22 figures. Slides and extended abstract version are available at http://www.loria.fr/~schaeffe/Pub/Diameter/ and http://www.iecn.u-nancy.fr/~chassain/ |
Databáze: | OpenAIRE |
Externí odkaz: |