Online computing of non-stationary distributions velocity fields by an accuracy controlled growing neural gas

Autor: Hervé Frezza-Buet
Přispěvatelé: Georgia Tech Lorraine [Metz], Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Ecole Supérieure d'Electricité - SUPELEC (FRANCE)-Georgia Institute of Technology [Atlanta]-CentraleSupélec-Ecole Nationale Supérieure des Arts et Metiers Metz-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2014
Předmět:
Zdroj: Neural Networks
Neural Networks, Elsevier, 2014, 60, pp.203-221. ⟨10.1016/j.neunet.2014.08.014⟩
ISSN: 0893-6080
DOI: 10.1016/j.neunet.2014.08.014
Popis: International audience; This paper presents a vector quantization process that can be applied online to a stream of inputs. It enables to set up and maintain a dynamical representation of the current information in the stream as a topology preserving graph of prototypical values, as well as a velocity field. The algorithm relies on the formulation of the accuracy of the quantization process, that allows for both the updating of the number of prototypes according to the stream evolution and the stabilization of the representation from which velocities can be extracted. A video processing application is presented.
Databáze: OpenAIRE