NMR Metabolomics for Stem Cell type discrimination
Autor: | Davide Moscatelli, Lidia Cova, Franca Castiglione, Massimo Morbidelli, Rosalia Pellitteri, Patrizia Bossolasco, Andrea Mele, Monica Ferro, Vincenzo Silani, Damiano Zaccheo, Evangelos Mavroudakis |
---|---|
Rok vydání: | 2017 |
Předmět: |
0301 basic medicine
Cell type Proton Magnetic Resonance Spectroscopy Subventricular zone lcsh:Medicine Biology PLS-DA Article Nuclear magnetic resonance 03 medical and health sciences Mice Metabolomics Neural Stem Cells stem cells metabolomic analysis Metabolome medicine Animals Progenitor cell Least-Squares Analysis lcsh:Science Nmr based metabolomics PCA Principal Component Analysis Multidisciplinary lcsh:R Discriminant Analysis cultures NMR Olfactory bulb Cell biology 030104 developmental biology medicine.anatomical_structure nervous system stem cells NMR metabolomics PCA PLS-DA Multivariate Analysis lcsh:Q Stem cell |
Zdroj: | Scientific Reports Scientific Reports, 7 (1) Scientific Reports, Vol 7, Iss 1, Pp 1-12 (2017) Scientific report (Camb. Res. Inst. (G.B.)) 17 (2017). doi:10.1038/s41598-017-16043-8 info:cnr-pdr/source/autori:Castiglione F, Ferro M, Mavroudakis E, Pellitteri R, Bossolasco P, Zaccheo D, Morbidelli M, Silani V, Mele A, Moscatelli D, Cova L/titolo:NMR Metabolomics for Stem Cell type discrimination/doi:10.1038%2Fs41598-017-16043-8/rivista:Scientific report (Camb. Res. Inst. (G.B.))/anno:2017/pagina_da:/pagina_a:/intervallo_pagine:/volume:17 |
ISSN: | 2045-2322 |
DOI: | 10.1038/s41598-017-16043-8 |
Popis: | Cell metabolism is a key determinant factor for the pluripotency and fate commitment of Stem Cells (SCs) during development, ageing, pathological onset and progression. We derived and cultured selected subpopulations of rodent fetal, postnatal, adult Neural SCs (NSCs) and postnatal glial progenitors, Olfactory Ensheathing Cells (OECs), respectively from the subventricular zone (SVZ) and the olfactory bulb (OB). Cell lysates were analyzed by proton Nuclear Magnetic Resonance (1H-NMR) spectroscopy leading to metabolites identification and quantitation. Subsequent multivariate analysis of NMR data by Principal Component Analysis (PCA), and Partial Least Square Discriminant Analysis (PLS-DA) allowed data reduction and cluster analysis. This strategy ensures the definition of specific features in the metabolic content of phenotypically similar SCs sharing a common developmental origin. The metabolic fingerprints for selective metabolites or for the whole spectra demonstrated enhanced peculiarities among cell types. The key result of our work is a neat divergence between OECs and the remaining NSC cells. We also show that statistically significant differences for selective metabolites characterizes NSCs of different ages. Finally, the retrived metabolome in cell cultures correlates to the physiological SC features, thus allowing an integrated bioengineering approach for biologic fingerprints able to dissect the (neural) SC molecular specificities. Scientific Reports, 7 (1) ISSN:2045-2322 |
Databáze: | OpenAIRE |
Externí odkaz: |