Multidimensional Ultrasound Doppler Signal Analysis for Fetal Activity Monitoring

Autor: Franck Perrotin, Sophie Ribes, Denis Kouame, Jean-Marc Girault
Přispěvatelé: Traitement et Compréhension d’Images (IRIT-TCI), Institut de recherche en informatique de Toulouse (IRIT), Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Université de Tours, Institut National de la Santé et de la Recherche Médicale (INSERM), CHRU Tours, Hôpital Bretonneau, Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Institut National de la Santé et de la Recherche Médicale - INSERM (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Université Toulouse - Jean Jaurès - UT2J (FRANCE), Université Toulouse 1 Capitole - UT1 (FRANCE), Centre Hospitalier Régional Universitaire de Tours - CHU Tours (FRANCE), Université de Tours (FRANCE), Hôpital Bretonneau (Tours, France), Institut National Polytechnique de Toulouse - INPT (FRANCE), Université Toulouse Capitole (UT Capitole), Université Fédérale Toulouse Midi-Pyrénées-Toulouse Mind & Brain Institut (TMBI), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse Capitole (UT Capitole), Université de Tours (UT), (OATAO), Open Archive Toulouse Archive Ouverte
Rok vydání: 2014
Předmět:
Support vector machine
Support Vector Machine
Acoustics and Ultrasonics
Multidimensional signals
[INFO.INFO-GR] Computer Science [cs]/Graphics [cs.GR]
02 engineering and technology
Doppler echocardiography
[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]
Traitement des images
[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]
0302 clinical medicine
[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing
Pregnancy
Image Processing
Computer-Assisted

Traitement du signal et de l'image
Fetal Monitoring
Fetal Movement
Mathematics
Signal processing
Radiological and Ultrasound Technology
medicine.diagnostic_test
Ultrasound
Signal Processing
Computer-Assisted

Vision par ordinateur et reconnaissance de formes
Heart Rate
Fetal

[INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR]
Echocardiography
Doppler

3. Good health
[INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV]
[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]
Fetal movement
symbols
Female
Doppler effect
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI]
Adult
medicine.medical_specialty
[INFO.INFO-TS] Computer Science [cs]/Signal and Image Processing
0206 medical engineering
Biophysics
Fetal monitoring
Sensitivity and Specificity
Ultrasonography
Prenatal

03 medical and health sciences
symbols.namesake
Young Adult
medicine
Humans
Radiology
Nuclear Medicine and imaging

Sensitivity (control systems)
Synthèse d'image et réalité virtuelle
business.industry
[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]
Pattern recognition
Ultrasonography
Doppler

Intelligence artificielle
020601 biomedical engineering
Surgery
Data set
Fetal heart rhythm
Feasibility Studies
Artificial intelligence
business
030217 neurology & neurosurgery
Zdroj: Ultrasound in Medicine & Biology
Ultrasound in Medicine & Biology, Elsevier, 2015, vol. 41 (n° 12), pp. 3172-3181. ⟨10.1016/j.ultrasmedbio.2015.07.026⟩
Ultrasound in Medicine & Biology, 2015, vol. 41 (n° 12), pp. 3172-3181. ⟨10.1016/j.ultrasmedbio.2015.07.026⟩
ISSN: 1879-291X
0301-5629
Popis: International audience; Fetal activity parameters such as movements, heart rate and the related parameters are essential indicators of fetal wellbeing, and no device provides simultaneous access to and sufficient estimation of all of these parameters to evaluate fetal health. This work was aimed at collecting these parameters to automatically separate healthy from compromised fetuses. To achieve this goal, we first developed a multi-sensor-multi-gate Doppler system. Then we recorded multidimensional Doppler signals and estimated the fetal activity parameters via dedicated signal processing techniques. Finally, we combined these parameters into four sets of parameters (or four hyper-parameters) to determine the set of parameters that is able to separate healthy from other fetuses. To validate our system, a data set consisting of two groups of fetal signals (normal and compromised) was established and provided by physicians. From the estimated parameters, an instantaneous Manning-like score, referred to as the ultrasonic score, was calculated and was used together with movements, heart rate and the associated parameters in a classification process employing the support vector machine method. We investigated the influence of the sets of parameters and evaluated the performance of the support vector machine using the computation of sensibility, specificity, percentage of support vectors and total classification error. The sensitivity of the four sets ranged from 79% to 100%. Specificity was 100% for all sets. The total classification error ranged from 0% to 20%. The percentage of support vectors ranged from 33% to 49%. Overall, the best results were obtained with the set of parameters consisting of fetal movement, short-term variability, long-term variability, deceleration and ultrasound score. The sensitivity, specificity, percentage of support vectors and total classification error of this set were respectively 100%, 100%, 35% and 0%. This indicated our ability to separate the data into two sets (normal fetuses and pathologic fetuses), and the results highlight the excellent match with the clinical classification performed by the physicians. This work indicates the feasibility of detecting compromised fetuses and also represents an interesting method of close fetal monitoring during the entire pregnancy.
Databáze: OpenAIRE