Understanding and Promoting the Rapid Preparation of the Triplite- Phase of LiFeSO4F for Use as a Large-Potential Fe Cathode

Autor: Jean-Marie Tarascon, Brent C. Melot, Sylvain Boulineau, Gwenaëlle Rousse, Artem M. Abakumov, Marine Reynaud, Mohamed Ati, Mariyappan Sathiya, Gustaaf Van Tendeloo
Přispěvatelé: Laboratoire réactivité et chimie des solides - UMR CNRS 7314 (LRCS), Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Advanced Lithium Energy Storage Systems - ALISTORE-ERI (ALISTORE-ERI), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), EMAT, University of Antwerp, University of Antwerp (UA), Institut de minéralogie et de physique des milieux condensés (IMPMC), Université Pierre et Marie Curie - Paris 6 (UPMC)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Department of Chemistry, University of Southern California, University of Southern California (USC), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2012
Předmět:
Zdroj: Journal of the American Chemical Society
Journal of the American Chemical Society, American Chemical Society, 2012, 134, pp.18380-18387. ⟨10.1021/ja3074402⟩
Journal of the American Chemical Society, 2012, 134, pp.18380-18387. ⟨10.1021/ja3074402⟩
ISSN: 0002-7863
1520-5126
DOI: 10.1021/ja3074402⟩
Popis: International audience; The development of new electrode materials, which are composed of Earth-abundant elements and that can be made via eco-efficient processes, is becoming absolutely necessary for reasons of sustainable production. The 3.9 V triplite-phase of LiFeSO4F, compared to the 3.6 V tavorite-phase, could satisfy this requirement provided the currently complex synthetic pathway can be simplified. Here, we present our work aiming at better understanding the reaction mechanism that govern its formation as a way to optimize its preparation. We first demonstrate, using complementary X-ray diffraction and transmission electron microscopy studies, that triplite-LiFeSO4F can nucleate from tavorite-LiFeSO4F via a reconstructive process whose kinetics are significantly influenced by moisture and particle morphology. Perhaps the most spectacular finding is that it is possible to prepare electrochemically active triplite-LiFeSO4F from anhydrous precursors using either reactive spark plasma sintering (SPS) synthesis in a mere 20 min at 320 °C or room-temperature ball milling for 3 h. These new pathways appear to be strongly driven by the easy formation of a disordered phase with higher entropy, as both techniques trigger disorder via rapid annealing steps or defect creation. Although a huge number of phases adopts the tavorite structure-type, this new finding offers both a potential way to prepare new compositions in the triplite structure and a wealth of opportunities for the synthesis of new materials which could benefit many domains beyond energy storage.
Databáze: OpenAIRE