A machine learning approach to galaxy properties: Joint redshift-stellar mass probability distributions with Random Forest
Autor: | A. A. Plazas, L. N. Da Costa, W. G. Hartley, Maria E. S. Pereira, Brian Yanny, Marcos Lima, Alex Drlica-Wagner, J. Carretero, Antonella Palmese, E. M. Huff, Juan Garcia-Bellido, Ramon Miquel, M. A. G. Maia, Michel Aguena, V. Scarpine, A. Choi, Martin Crocce, F. J. Castander, G. Tarle, R. D. Wilkinson, Ian Harrison, S. Mucesh, K. Honscheid, Sunayana Bhargava, A. Alarcon, J. De Vicente, David J. James, Huan Lin, Pablo Fosalba, M. Carrasco Kind, Chun-Hao To, Alexandra Amon, E. J. Sanchez, F. Paz-Chinchón, Keith Bechtol, E. Suchyta, August E. Evrard, M. Costanzi, M. Smith, Felipe Menanteau, Josh Frieman, D. L. Hollowood, S. Allam, Robert A. Gruendl, S. Serrano, Ofer Lahav, Daniel Gruen, Samuel Hinton, Peter Melchior, Christopher J. Conselice, Erin Sheldon, B. Flaugher, E. Bertin, G. Gutierrez, David J. Brooks, S. Desai, Enrique Gaztanaga, Robert Morgan, J. Gschwend, S. Everett, D. W. Gerdes, Gary Bernstein, I. Ferrero, H. T. Diehl, David Bacon, I. Sevilla-Noarbe, N. Kuropatkin, K. D. Eckert, T. N. Varga, Asa F. L. Bluck, Kyler Kuehn, Michael Schubnell, Daniel Thomas, L. Whiteway, A. Carnero Rosell |
---|---|
Přispěvatelé: | National Science Foundation (US), Ministerio de Ciencia, Innovación y Universidades (España), Generalitat de Catalunya, European Commission, Instituto Nacional de Ciência e Tecnologia (Brasil), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), DES, Mucesh, S., Hartley, W. G., Palmese, A., Lahav, O., Whiteway, L., Amon, A., Bechtol, K., Bernstein, G. M., Carnero Rosell, A., Carrasco Kind, M., Choi, A., Eckert, K., Everett, S., Gruen, D., Gruendl, R. A., Harrison, I., Huff, E. M., Kuropatkin, N., Sevilla-Noarbe, I., Sheldon, E., Yanny, B., Aguena, M., Allam, S., Bacon, D., Bertin, E., Bhargava, S., Brooks, D., Carretero, J., Castander, F. J., Conselice, C., Costanzi, M., Crocce, M., da Costa, L. N., Pereira, M. E. S., De Vicente, J., Desai, S., Diehl, H. T., Drlica-Wagner, A., Evrard, A. E., Ferrero, I., Flaugher, B., Fosalba, P., Frieman, J., García-Bellido, J., Gaztanaga, E., Gerdes, D. W., Gschwend, J., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Kuehn, K., Lima, M., Lin, H., Maia, M. A. G., Melchior, P., Menanteau, F., Miquel, R., Morgan, R., Paz-Chinchón, F., Plazas, A. A., Sanchez, E., Scarpine, V., Schubnell, M., Serrano, S., Smith, M., Suchyta, E., Tarle, G., Thomas, D., To, C., Varga, T. N., Wilkinson, R. D. |
Rok vydání: | 2021 |
Předmět: |
FOS: Computer and information sciences
Computer Science - Machine Learning statistical [Methods] software: data analysis computer.software_genre 01 natural sciences data analysi [software] Copula (probability theory) Machine Learning (cs.LG) Astrophysics - Cosmology and Nongalactic Astrophysic data analysis [Methods] 010303 astronomy & astrophysics Physics fundamental parameter [galaxies] galaxies: fundamental parameters Random forest Software: public realese fundamental parameters [Galaxies] Probability distribution galaxies: evolution Astrophysics - Instrumentation and Methods for Astrophysics Astrophysics - Cosmology and Nongalactic Astrophysics public realese [Software] Cosmology and Nongalactic Astrophysics (astro-ph.CO) methods: data analysis methods: statistical software: public release Astrophysics - Astrophysics of Galaxies FOS: Physical sciences Astrophysics::Cosmology and Extragalactic Astrophysics Machine learning Astrophysics - Astrophysics of Galaxie 0103 physical sciences Galaxy formation and evolution [INFO]Computer Science [cs] [PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] Probability integral transform Instrumentation and Methods for Astrophysics (astro-ph.IM) 010308 nuclear & particles physics business.industry Univariate Astronomy and Astrophysics evolution [Galaxies] public release [software] Redshift Galaxy Space and Planetary Science data analysis [Software] Astrophysics of Galaxies (astro-ph.GA) data analysi [methods] Artificial intelligence Astrophysics - Instrumentation and Methods for Astrophysic [PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] business computer |
Zdroj: | Digital.CSIC. Repositorio Institucional del CSIC instname Mon.Not.Roy.Astron.Soc. Mon.Not.Roy.Astron.Soc., 2021, 502 (2), pp.2770-2786. ⟨10.1093/mnras/stab164⟩ |
ISSN: | 0035-8711 |
DOI: | 10.1093/mnras/stab164⟩ |
Popis: | We demonstrate that highly accurate joint redshift-stellar mass probability distribution functions (PDFs) can be obtained using the Random Forest (RF) machine learning (ML) algorithm, even with few photometric bands available. As an example, we use the Dark Energy Survey (DES), combined with the COSMOS2015 catalogue for redshifts and stellar masses. We build two ML models: one containing deep photometry in the $griz$ bands, and the second reflecting the photometric scatter present in the main DES survey, with carefully constructed representative training data in each case. We validate our joint PDFs for $10,699$ test galaxies by utilizing the copula probability integral transform and the Kendall distribution function, and their univariate counterparts to validate the marginals. Benchmarked against a basic set-up of the template-fitting code BAGPIPES, our ML-based method outperforms template fitting on all of our predefined performance metrics. In addition to accuracy, the RF is extremely fast, able to compute joint PDFs for a million galaxies in just under $6$ min with consumer computer hardware. Such speed enables PDFs to be derived in real time within analysis codes, solving potential storage issues. As part of this work we have developed GALPRO, a highly intuitive and efficient Python package to rapidly generate multivariate PDFs on-the-fly. GALPRO is documented and available for researchers to use in their cosmology and galaxy evolution studies. Comment: 18 pages, 8 figures, Accepted by MNRAS |
Databáze: | OpenAIRE |
Externí odkaz: |