The Territorial Raider game and graph derangements
Autor: | Jan Rychtář, Nina Galanter, Dennis Silva, Jonathan T. Rowell |
---|---|
Rok vydání: | 2016 |
Předmět: |
0301 basic medicine
Discrete mathematics Applied Mathematics 010102 general mathematics Population based 01 natural sciences Injective function Graph Combinatorics 03 medical and health sciences Derangement symbols.namesake 030104 developmental biology Nash equilibrium FOS: Mathematics symbols Mathematics - Combinatorics 91A43 05C75 05C70 91A06 Discrete Mathematics and Combinatorics Combinatorics (math.CO) 0101 mathematics Game theory Mathematics |
Zdroj: | Discrete Applied Mathematics. 213:13-16 |
ISSN: | 0166-218X |
DOI: | 10.1016/j.dam.2016.03.016 |
Popis: | A derangement of a graph G = ( V , E ) is an injective function f : V ź V such that for all v ź V , f ( v ) ź v and ( v , f ( v ) ) ź E . Not all graphs admit a derangement and previous results have characterized graphs with derangements using neighborhood conditions for subsets of V . We establish an alternative criterion for the existence of derangements on a graph. We analyze strict Nash equilibria of the biologically motivated Territorial Raider game, a multi-player competition for resources in a spatially structured population based on animal raiding and defending behavior. We find that a graph G admits a derangement if and only if there is a strict Nash equilibrium of the Territorial Raider game on G . |
Databáze: | OpenAIRE |
Externí odkaz: |