Orbit codes from forms on vector spaces over a finite field
Autor: | Alessandro Siciliano, Giuseppe Marino, Antonio Cossidente, Francesco Pavese, Angela Aguglia |
---|---|
Přispěvatelé: | Aguglia, A., Cossidente, A., Marino, G., Pavese, F., Siciliano, A. |
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: |
Automorphism group
Algebra and Number Theory Computer Networks and Communications Applied Mathematics Orbit code 020206 networking & telecommunications General linear group 0102 computer and information sciences 02 engineering and technology Bilinear form 01 natural sciences Microbiology Hermitian matrix Combinatorics Finite field 010201 computation theory & mathematics Subspace code Constant dimension code 0202 electrical engineering electronic engineering information engineering Discrete Mathematics and Combinatorics Orbit (control theory) Vector space Mathematics |
Popis: | In this paper we construct different families of orbit codes in the vector spaces of the symmetric bilinear forms, quadratic forms and Hermitian forms on an \begin{document}$ n $\end{document}-dimensional vector space over the finite field \begin{document}$ {\mathbb F_{q}} $\end{document}. All these codes admit the general linear group \begin{document}$ {{{{\rm{GL}}}}}(n,q) $\end{document} as a transitive automorphism group. |
Databáze: | OpenAIRE |
Externí odkaz: |