Implementation of Geometry Dependent Charge Flux into Polarizable AMOEBA+ Potential

Autor: Jean-Philip Piquemal, Pengyu Ren, Chengwen Liu
Přispěvatelé: Biomedical Engineering [Austin], University of Texas at Austin [Austin], Laboratoire de chimie théorique (LCT), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), European Project: 810367,EMC2(2019)
Rok vydání: 2019
Předmět:
Zdroj: Journal of Physical Chemistry Letters, American Chemical Society
Journal of Physical Chemistry Letters
Journal of Physical Chemistry Letters, American Chemical Society, 2020, 11 (2), pp.419-426. ⟨10.1021/acs.jpclett.9b03489⟩
Journal of Physical Chemistry Letters, 2020, 11 (2), pp.419-426. ⟨10.1021/acs.jpclett.9b03489⟩
J Phys Chem Lett
ISSN: 1948-7185
DOI: 10.1021/acs.jpclett.9b03489
Popis: Molecular dynamics (MD) simulations employing classical force fields (FFs) have been widely used to model molecular systems. The important ingredient of the current FFs, atomic charge, remains fixed during MD simulations despite the atomic environment or local geometry changes. This approximation hinders the transferability of the potential being used in multiple phases. Here we implement a geometry dependent charge flux (GDCF) model into the multipole-based AMOEBA+ polarizable potential. The CF in the current work explicitly depends on the local geometry (bond and angle) of the molecule. To our knowledge, this is the first study that derives energy and force expressions due to GDCF in a multipole-based polarizable FF framework. Due to the inclusion of GDCF, the AMOEBA+ water model is noticeably improved in terms of describing the monomer properties, cluster binding/interaction energy and a variety of liquid properties, including the infrared spectra that previous flexible water models were not able to capture.
Databáze: OpenAIRE