Fermentative Metabolism of Bacillus subtilis: Physiology and Regulation of Gene Expression
Autor: | Philippe Glaser, Dieter Jahn, Oliver Dreesen, Hugo Cruz Ramos, Marco Marino, Tamara Hoffmann, Hafed Nedjari, Elena Presecan-Siedel |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2000 |
Předmět: |
Iron-Sulfur Proteins
Carboxy-Lyases Genetics and Molecular Biology Bacillus subtilis Acetates Microbiology chemistry.chemical_compound Phosphate Acetyltransferase Bacterial Proteins Respiratory nitrate reductase Lactate dehydrogenase Genes Regulator Operon Phosphate acetyltransferase Anaerobiosis Lactic Acid Butylene Glycols Molecular Biology Lactate permease Nitrates biology L-Lactate Dehydrogenase Models Genetic Acetoin Escherichia coli Proteins Membrane Transport Proteins Gene Expression Regulation Bacterial biology.organism_classification Acetolactate Synthase Alcohol Oxidoreductases chemistry Biochemistry Fermentation Mutation Anaerobic exercise Oxidation-Reduction |
Popis: | Bacillus subtilis grows in the absence of oxygen using nitrate ammonification and various fermentation processes. Lactate, acetate, and 2,3-butanediol were identified in the growth medium as the major anaerobic fermentation products by using high-performance liquid chromatography. Lactate formation was found to be dependent on the lctEP locus, encoding lactate dehydrogenase and a putative lactate permease. Mutation of lctE results in drastically reduced anaerobic growth independent of the presence of alternative electron acceptors, indicating the importance of NADH reoxidation by lactate dehydrogenase for the overall anaerobic energy metabolism. Anaerobic formation of 2,3-butanediol via acetoin involves acetolactate synthase and decarboxylase encoded by the alsSD operon. Mutation of alsSD has no significant effect on anaerobic growth. Anaerobic acetate synthesis from acetyl coenzyme A requires phosphotransacetylase encoded by pta . Similar to the case for lctEP , mutation of pta significantly reduces anaerobic fermentative and respiratory growth. The expression of both lctEP and alsSD is strongly induced under anaerobic conditions. Anaerobic lctEP and alsSD induction was found to be partially dependent on the gene encoding the redox regulator Fnr. The observed fnr dependence might be the result of Fnr-induced arfM ( ywiD ) transcription and subsequent lctEP and alsSD activation by the regulator ArfM (YwiD). The two-component regulatory system encoded by resDE is also involved in anaerobic lctEP induction. No direct resDE influence on the redox regulation of alsSD was observed. The alternative electron acceptor nitrate represses anaerobic lctEP and alsSD transcription. Nitrate repression requires resDE - and fnr -dependent expression of narGHJI , encoding respiratory nitrate reductase. The gene alsR , encoding a regulator potentially responding to changes of the intracellular pH and to acetate, is essential for anaerobic lctEP and alsSD expression. In agreement with its known aerobic function, no obvious oxygen- or nitrate-dependent pta regulation was observed. A model for the regulation of the anaerobic fermentation genes in B. subtilis is proposed. |
Databáze: | OpenAIRE |
Externí odkaz: |