Formal solutions of completely integrable Pfaffian systems with normal crossings
Autor: | Suzy S. Maddah, Moulay A. Barkatou, Maximilian Jaroschek |
---|---|
Přispěvatelé: | Mathématiques & Sécurité de l'information (XLIM-MATHIS), XLIM (XLIM), Université de Limoges (UNILIM)-Centre National de la Recherche Scientifique (CNRS)-Université de Limoges (UNILIM)-Centre National de la Recherche Scientifique (CNRS), Université de Limoges (UNILIM), Max-Planck-Institut für Informatik (MPII), Max-Planck-Gesellschaft, Symbolic Special Functions : Fast and Certified (SPECFUN), Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria) |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
FOS: Computer and information sciences
Computer Science - Symbolic Computation Integrable system Rank reduction Normal crossings Pfaffian systems Pfaffian Bivariate analysis Symbolic Computation (cs.SC) engineering.material 01 natural sciences Formal solutions 010104 statistics & probability ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION 0101 mathematics Mathematics Maple [INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC] Algebra and Number Theory 010102 general mathematics Linear systems of partial differential equations Symbolic computation Algebra Computational Mathematics Fundamental matrix (linear differential equation) Hukuhara–Turrittin's normal form engineering |
Zdroj: | Journal of Symbolic Computation Journal of Symbolic Computation, Elsevier, 2017, 81, pp.41-68. ⟨10.1016/j.jsc.2016.11.018⟩ Journal of Symbolic Computation, 2017, 81, pp.41-68. ⟨10.1016/j.jsc.2016.11.018⟩ |
ISSN: | 0747-7171 1095-855X |
DOI: | 10.1016/j.jsc.2016.11.018⟩ |
Popis: | In this paper, we present an algorithm for computing a fundamental matrix of formal solutions of completely integrable Pfaffian systems with normal crossings in several variables. This algorithm is a generalization of a method developed for the bivariate case based on a combination of several reduction techniques and is implemented in the computer algebra system Maple. Final revision |
Databáze: | OpenAIRE |
Externí odkaz: |