Supersymmetrization: AKSZ and beyond?
Autor: | Vladimir Salnikov |
---|---|
Přispěvatelé: | Centre National de la Recherche Scientifique (CNRS), Laboratoire des Sciences de l'Ingénieur pour l'Environnement - UMR 7356 (LaSIE), Université de La Rochelle (ULR)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
High Energy Physics - Theory
Mathematics - Differential Geometry Generalization Formalism (philosophy) FOS: Physical sciences 01 natural sciences Theoretical physics High Energy Physics::Theory supersymmetrization [MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] 0103 physical sciences FOS: Mathematics Gauge theory 0101 mathematics Mathematical Physics Mathematics multigraded geometry graded Poisson sigma model [PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th] 010102 general mathematics AKSZ procedure Sigma Statistical and Nonlinear Physics Mathematical Physics (math-ph) High Energy Physics - Theory (hep-th) Differential Geometry (math.DG) [MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] 010307 mathematical physics Q-bundles |
Zdroj: | Russian Journal of Mathematical Physics Russian Journal of Mathematical Physics, MAIK Nauka/Interperiodica, 2020, ⟨10.1134/S1061920820040111⟩ |
ISSN: | 1061-9208 1555-6638 |
DOI: | 10.1134/S1061920820040111⟩ |
Popis: | In this paper we describe multigraded generalizations of some constructions useful for mathematical understanding of gauge theories: we perform a near-at-hand generalization of the Aleksandrov--Kontsevich--Schwarz--Zaboronsky procedure, we also extend the formalism of $Q$-bundles introduced first by A. Kotov and T. Strobl. We compare these approaches studying some supersymmetric sigma models important in theoretical physics. Comment: 32 pages, including an appendix |
Databáze: | OpenAIRE |
Externí odkaz: |