​Parcel feature data derived from Google Street View images for urban land use classification in Brooklyn, New York Cityfor urban land use classification in Brooklyn, New York Cityretain-->

-->
Autoři: Xiaojiang Li, Chuanrong Zhang, Weixing Zhang, Wenjie Wang, Dean M. Hanink, Weidong Li
Zdroj: Data in Brief
Data in Brief, Vol 12, Iss C, Pp 175-179 (2017)
Informace o vydavateli: Elsevier, 2017.
Rok vydání: 2017
Témata: 0211 other engineering and technologies, 0507 social and economic geography, High resolution, 02 engineering and technology, lcsh:Computer applications to medicine. Medical informatics, 11. Sustainability, Research article, lcsh:Science (General), 021101 geological & geomatics engineering, Data Article, Multidisciplinary, Feature data, Google Street View, Light detection, 05 social sciences, Orthophoto, Urban land, Detected text, Megacity, Lidar, Geography, Urban land use classification, lcsh:R858-859.7, Parcel feature, 050703 geography, Cartography, lcsh:Q1-390
Popis: Google Street View (GSV) was used for urban land use classification, together with airborne light detection and ranging (LiDAR) data and high resolution orthoimagery, by a parcel-based method. In this data article, we present the input raw GSV images, intermediate products of GSV images, and final urban land use classification data that are related to our research article "Parcel-based urban land use classification in megacity using airborne LiDAR, high resolution orthoimagery, and Google Street View" (Zhang et al., 2017) [1]. More detail about other used data and our findings can be found in Zhang et al. (2017) [1].
Jazyk: English
ISSN: 2352-3409
Přístupová URL adresa: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0a5074f5725420a4d32ba6cfa0567ee9
http://europepmc.org/articles/PMC5397128
Rights: OPEN
Přírůstkové číslo: edsair.doi.dedup.....0a5074f5725420a4d32ba6cfa0567ee9
Autor: Xiaojiang Li, Chuanrong Zhang, Weixing Zhang, Wenjie Wang, Dean M. Hanink, Weidong Li
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Data in Brief
Data in Brief, Vol 12, Iss C, Pp 175-179 (2017)
ISSN: 2352-3409
Popis: Google Street View (GSV) was used for urban land use classification, together with airborne light detection and ranging (LiDAR) data and high resolution orthoimagery, by a parcel-based method. In this data article, we present the input raw GSV images, intermediate products of GSV images, and final urban land use classification data that are related to our research article "Parcel-based urban land use classification in megacity using airborne LiDAR, high resolution orthoimagery, and Google Street View" (Zhang et al., 2017) [1]. More detail about other used data and our findings can be found in Zhang et al. (2017) [1].
Databáze: OpenAIRE