On three early papers by Herbert Busemann

Autor: Papadopoulos, Athanase, Troyanov, Marc
Přispěvatelé: Institut de Recherche Mathématique Avancée (IRMA), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Section de Mathematiques [Lausanne], Ecole Polytechnique Fédérale de Lausanne (EPFL), ANR-12-BS01-0009,Finsler,Géométrie de Finsler et applications(2012)
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Popis: This paper is a commentary and a reading guide to three papers by Herbert Busemann, \"Uber die Geometrien, in denen die "Kreise mit unendlichem Radius" die k\"urzesten Linien sind." (On the geometries where circles of infinite radius are the shortest lines) (1932), "Paschsches Axiom und Zweidimensionalit\"at," (Pasch's Axiom and Two--Dimensionality) (1933) and "\"Uber R\"aume mit konvexen Kugeln und Parallelenaxiom (On spaces with convex spheres and the parallel postulate) (1933). These are the first papers that Busemann wrote on the foundations of geometry and the axiomatic characterization of Minkowski spaces (finite-dimensional normed spaces). The subject of these papers followed Busemann for the rest of his life, and the three papers already contain several ideas and techniques that he developed later on, in his work on the subject which lasted several decades. The three papers were translated into English by Annette A'Campo. These translations, together with the final version of present commentary, will be part of the forthcoming edition of Busemann's Collected Papers edition.
Databáze: OpenAIRE