On three early papers by Herbert Busemann
Autor: | Papadopoulos, Athanase, Troyanov, Marc |
---|---|
Přispěvatelé: | Institut de Recherche Mathématique Avancée (IRMA), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Section de Mathematiques [Lausanne], Ecole Polytechnique Fédérale de Lausanne (EPFL), ANR-12-BS01-0009,Finsler,Géométrie de Finsler et applications(2012) |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
Mathematics - History and Overview
History and Overview (math.HO) Busemann geometry Metric Geometry (math.MG) Geometric Topology (math.GT) Minkowski spaces horospheres Mathematics - Geometric Topology 53C70 54E35 53C23 97E10 Mathematics - Metric Geometry [MATH.MATH-HO]Mathematics [math]/History and Overview [math.HO] [MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT] FOS: Mathematics Axioms of geometry [MATH.MATH-MG]Mathematics [math]/Metric Geometry [math.MG] Hilbert axioms |
Popis: | This paper is a commentary and a reading guide to three papers by Herbert Busemann, \"Uber die Geometrien, in denen die "Kreise mit unendlichem Radius" die k\"urzesten Linien sind." (On the geometries where circles of infinite radius are the shortest lines) (1932), "Paschsches Axiom und Zweidimensionalit\"at," (Pasch's Axiom and Two--Dimensionality) (1933) and "\"Uber R\"aume mit konvexen Kugeln und Parallelenaxiom (On spaces with convex spheres and the parallel postulate) (1933). These are the first papers that Busemann wrote on the foundations of geometry and the axiomatic characterization of Minkowski spaces (finite-dimensional normed spaces). The subject of these papers followed Busemann for the rest of his life, and the three papers already contain several ideas and techniques that he developed later on, in his work on the subject which lasted several decades. The three papers were translated into English by Annette A'Campo. These translations, together with the final version of present commentary, will be part of the forthcoming edition of Busemann's Collected Papers edition. |
Databáze: | OpenAIRE |
Externí odkaz: |