Type I interferon responses in rhesus macaques prevent SIV infection and slow disease progression
Autor: | Robert B. Norgren, Jacob D. Estes, Krystelle Nganou Makamdop, Richard T R Zhu, Daniel C. Douek, Brenna J. Hill, Steven E. Bosinger, Eli Boritz, Gregory Q. Del Prete, Samuel Darko, Emma Reiss, Jeffrey D. Lifson, Ganit Yarden, Jerome A. Langer, Brandon F. Keele, Srinivas S. Rao, Guido Silvestri, J. Katherina Timmer, Eduardo J. Contijoch, Doron Levin, John Paul Todd, Sathi Wijeyesinghe, Martha Nason, Gideon Schreiber, Gregory K. Tharp, Netanya G. Sandler |
---|---|
Rok vydání: | 2014 |
Předmět: |
CD4-Positive T-Lymphocytes
Simian Acquired Immunodeficiency Syndrome Alpha interferon Inflammation Kaplan-Meier Estimate Biology medicine.disease_cause Antiviral Agents Article Virus Immunity Interferon medicine Animals Interferon alfa Multidisciplinary Interferon-alpha Simian immunodeficiency virus Virology Macaca mulatta Immunity Innate Blockade Gene Expression Regulation Immunology Disease Progression Simian Immunodeficiency Virus medicine.symptom medicine.drug Signal Transduction |
Zdroj: | Nature. 511(7511) |
ISSN: | 1476-4687 |
Popis: | The timing of type I interferon signalling determines the disease course of SIV infection. Type I interferon (IFN-I) is shown here to have dual effects in rhesus macaques exposed to simian immunodeficiency virus (SIV): it is beneficial at the onset of infection but as infection progresses it becomes detrimental. IFN signaling was manipulated in two ways. IFN-I receptor blockade results in increased plasma viraemia, accelerated CD4 T cell loss and progression to AIDS. In contrast, IFN-α2a administration prior to high-dose intrarectal SIV challenge increases resistance to systemic infection. However, continued IFN-α2a treatment induces IFN-I desensitization and facilitates SIV infection. Overall, the benefits of early antiviral activity appear to outweigh the detrimental effects of immune activation during acute SIV infection. Inflammation in HIV infection is predictive of non-AIDS morbidity and death1, higher set point plasma virus load2 and virus acquisition3; thus, therapeutic agents are in development to reduce its causes and consequences. However, inflammation may simultaneously confer both detrimental and beneficial effects. This dichotomy is particularly applicable to type I interferons (IFN-I) which, while contributing to innate control of infection4,5,6,7,8,9,10, also provide target cells for the virus during acute infection, impair CD4 T-cell recovery, and are associated with disease progression6,7,11,12,13,14,15,16,17,18,19. Here we manipulated IFN-I signalling in rhesus macaques (Macaca mulatta) during simian immunodeficiency virus (SIV) transmission and acute infection with two complementary in vivo interventions. We show that blockade of the IFN-I receptor caused reduced antiviral gene expression, increased SIV reservoir size and accelerated CD4 T-cell depletion with progression to AIDS despite decreased T-cell activation. In contrast, IFN-α2a administration initially upregulated expression of antiviral genes and prevented systemic infection. However, continued IFN-α2a treatment induced IFN-I desensitization and decreased antiviral gene expression, enabling infection with increased SIV reservoir size and accelerated CD4 T-cell loss. Thus, the timing of IFN-induced innate responses in acute SIV infection profoundly affects overall disease course and outweighs the detrimental consequences of increased immune activation. Yet, the clinical consequences of manipulation of IFN signalling are difficult to predict in vivo and therapeutic interventions in human studies should be approached with caution. |
Databáze: | OpenAIRE |
Externí odkaz: |