Turbulent Energy Scale-Budget Equations for nearly Homogeneous Sheared Turbulence

Autor: Fabien Anselmet, Luminita Danaila, Tongming Zhou
Přispěvatelé: Complexe de recherche interprofessionnel en aérothermochimie (CORIA), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche sur les Phénomènes Hors Equilibre (IRPHE), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Nanyang Technological University [Singapour], Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU), School of Mechanical and Aerospace Engineering [Singapore] (MAE)
Rok vydání: 2004
Předmět:
fully developed channel flow
K-epsilon turbulence model
General Chemical Engineering
General Physics and Astronomy
01 natural sciences
[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph]
010305 fluids & plasmas
Physics::Fluid Dynamics
hot-wire measurements
symbols.namesake
0103 physical sciences
scale-by-scale energy budget equations
[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]
Statistical physics
Physical and Theoretical Chemistry
010306 general physics
Physics
Turbulent diffusion
[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Mechanics of the fluids [physics.class-ph]
Turbulence
Kolmogorov microscales
Reynolds number
Mechanics
Open-channel flow
Turbulence kinetic energy
nearly homogeneous sheared turbulence
symbols
Shear flow
Zdroj: Flow, Turbulence and Combustion
Flow, Turbulence and Combustion, 2004, 72, pp.287-310. ⟨10.1023/B:APPL.0000044416.08710.77⟩
Flow, Turbulence and Combustion, Springer Verlag (Germany), 2004, 72, pp.287-310. ⟨10.1023/B:APPL.0000044416.08710.77⟩
ISSN: 1386-6184
1573-1987
DOI: 10.1023/b:appl.0000044416.08710.77
Popis: For moderate Reynolds numbers, the isotropic relation between second-order and third-order moments for velocity increments (Kolmogorov's equation) is not respected, reflecting a non-negligible correlation between the scales responsible for the injection, transfer and dissipation of the turbulent energy. For (shearless) grid turbulence, there is only one dominant large-scale phenomenon, which is the non-stationarity of statistical moments resulting from the decay of energy downstream of the grid. In this case, the extension of Kolmogorov's analysis, as carried out by Danaila, Anselmet, Zhou and Antonia, J. Fluid Mech. 391, 1999 359–369) is quite straightforward. For shear flows, several large-scale phenomena generally coexist with similar amplitudes. This is particularly the case for wall-bounded flows, where turbulent diffusion and shear effects can present comparable amplitudes. The objective of this work is to quantify, in a fully developed turbulent channel flow and far from the wall, the influence of these two effects on the scale-by-scale energy budget equation. A generalized Kolmogorov equation is derived. Relatively good agreement between the new equation and hot-wire measurements is obtained in the outer region (40 < x+3 < 150) of the channel flow, for which the turbulent Reynolds number is Rlambda asymp 36.
Databáze: OpenAIRE