Turbulent Energy Scale-Budget Equations for nearly Homogeneous Sheared Turbulence
Autor: | Fabien Anselmet, Luminita Danaila, Tongming Zhou |
---|---|
Přispěvatelé: | Complexe de recherche interprofessionnel en aérothermochimie (CORIA), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche sur les Phénomènes Hors Equilibre (IRPHE), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Nanyang Technological University [Singapour], Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU), School of Mechanical and Aerospace Engineering [Singapore] (MAE) |
Rok vydání: | 2004 |
Předmět: |
fully developed channel flow
K-epsilon turbulence model General Chemical Engineering General Physics and Astronomy 01 natural sciences [SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] 010305 fluids & plasmas Physics::Fluid Dynamics hot-wire measurements symbols.namesake 0103 physical sciences scale-by-scale energy budget equations [PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] Statistical physics Physical and Theoretical Chemistry 010306 general physics Physics Turbulent diffusion [PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Mechanics of the fluids [physics.class-ph] Turbulence Kolmogorov microscales Reynolds number Mechanics Open-channel flow Turbulence kinetic energy nearly homogeneous sheared turbulence symbols Shear flow |
Zdroj: | Flow, Turbulence and Combustion Flow, Turbulence and Combustion, 2004, 72, pp.287-310. ⟨10.1023/B:APPL.0000044416.08710.77⟩ Flow, Turbulence and Combustion, Springer Verlag (Germany), 2004, 72, pp.287-310. ⟨10.1023/B:APPL.0000044416.08710.77⟩ |
ISSN: | 1386-6184 1573-1987 |
DOI: | 10.1023/b:appl.0000044416.08710.77 |
Popis: | For moderate Reynolds numbers, the isotropic relation between second-order and third-order moments for velocity increments (Kolmogorov's equation) is not respected, reflecting a non-negligible correlation between the scales responsible for the injection, transfer and dissipation of the turbulent energy. For (shearless) grid turbulence, there is only one dominant large-scale phenomenon, which is the non-stationarity of statistical moments resulting from the decay of energy downstream of the grid. In this case, the extension of Kolmogorov's analysis, as carried out by Danaila, Anselmet, Zhou and Antonia, J. Fluid Mech. 391, 1999 359–369) is quite straightforward. For shear flows, several large-scale phenomena generally coexist with similar amplitudes. This is particularly the case for wall-bounded flows, where turbulent diffusion and shear effects can present comparable amplitudes. The objective of this work is to quantify, in a fully developed turbulent channel flow and far from the wall, the influence of these two effects on the scale-by-scale energy budget equation. A generalized Kolmogorov equation is derived. Relatively good agreement between the new equation and hot-wire measurements is obtained in the outer region (40 < x+3 < 150) of the channel flow, for which the turbulent Reynolds number is Rlambda asymp 36. |
Databáze: | OpenAIRE |
Externí odkaz: |