How many weights can a linear code have?

Autor: Hongwei Zhu, Gérard D. Cohen, Minjia Shi, Patrick Solé
Přispěvatelé: Anhui University [Hefei], Laboratoire Analyse, Géométrie et Applications (LAGA), Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Institut Galilée-Université Paris 13 (UP13), Télécom ParisTech
Rok vydání: 2018
Předmět:
Zdroj: Designs, Codes and Cryptography
Designs, Codes and Cryptography, Springer Verlag, 2019, ⟨10.1007/s10623-018-0488-z⟩
ISSN: 1573-7586
0925-1022
Popis: We study the combinatorial function L(k, q), the maximum number of nonzero weights a linear code of dimension k over $${\mathbb {F}}_q$$ can have. We determine it completely for $$q=2,$$ and for $$k=2,$$ and provide upper and lower bounds in the general case when both k and q are $$\ge 3.$$ A refinement L(n, k, q), as well as nonlinear analogues N(M, q) and N(n, M, q), are also introduced and studied.
Databáze: OpenAIRE