Robust nonparametric estimation of the conditional tail dependence coefficient

Autor: Jing Qin, Nguyen Khanh Le Ho, Armelle Guillou, Yuri Goegebeur
Přispěvatelé: Department of Mathematics and Computer Science [Odense] (IMADA), University of Southern Denmark (SDU), Institut de Recherche Mathématique Avancée (IRMA), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), ANR-19-CE40-0013,ExtremReg,Régression extrême avec applications à l'économétrie, l'environnement et à la finance(2019)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Goegebeur, Y, Guillou, A, Ho, N K L & Qin, J 2020, ' Robust nonparametric estimation of the conditional tail dependence coefficient ', Journal of Multivariate Analysis, vol. 178, 104607 . https://doi.org/10.1016/j.jmva.2020.104607
Journal of Multivariate Analysis
Journal of Multivariate Analysis, Elsevier, 2020, 178, ⟨10.1016/j.jmva.2020.104607⟩
ISSN: 0047-259X
1095-7243
DOI: 10.1016/j.jmva.2020.104607
Popis: International audience; We consider robust and nonparametric estimation of the coefficient of tail dependence in presence of random covariates. The estimator is obtained by fitting the extended Pareto distribution locally to properly transformed bivariate observations using the minimum density power divergence criterion. We establish convergence in probability and asymptotic normality of the proposed estimator under some regularity conditions. The finite sample performance is evaluated with a small simulation experiment, and the practical applicability of the method is illustrated on a real dataset of air pollution measurements.
Databáze: OpenAIRE