An entropy production based method for determining the position diffusion’s coefficient of a quantum Brownian motion
Autor: | József Zsolt Bernád, M. A. Csirik, G. Homa |
---|---|
Rok vydání: | 2018 |
Předmět: |
Physics
Quantum Physics 010308 nuclear & particles physics Entropy production FOS: Physical sciences 01 natural sciences Atomic and Molecular Physics and Optics Classical mechanics Position (vector) Quantum harmonic oscillator 0103 physical sciences Master equation Quantum information Diffusion (business) Quantum Physics (quant-ph) 010306 general physics Brownian motion Harmonic oscillator |
Zdroj: | The European Physical Journal D. 72 |
ISSN: | 1434-6079 1434-6060 |
DOI: | 10.1140/epjd/e2018-90476-0 |
Popis: | Quantum Brownian motion of a harmonic oscillator in the Markovian approximation is described by the respective Caldeira-Leggett master equation. This master equation can be brought into Lindblad form by adding a position diffusion term to it. The coefficient of this term is either customarily taken to be the lower bound dictated by the Dekker inequality or determined by more detailed derivations on the linearly damped quantum harmonic oscillator. In this paper, we explore the theoretical possibilities of determining the position diffusion term's coefficient by analyzing the entropy production of the master equation. Comment: 13 pages, 10 figures |
Databáze: | OpenAIRE |
Externí odkaz: |