On the Generating Functionals of a Class of Random Packing Point Processes

Autor: Nguyen, Tien Viet, Baccelli, François
Přispěvatelé: Qualcomm Technologies, Inc., University of Texas at Austin [Austin], Dynamics of Geometric Networks (DYOGENE), Département d'informatique - ENS Paris (DI-ENS), Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Inria Paris-Rocquencourt, Institut National de Recherche en Informatique et en Automatique (Inria), Département d'informatique de l'École normale supérieure (DI-ENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Inria Paris-Rocquencourt, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL)
Rok vydání: 2013
Předmět:
DOI: 10.48550/arxiv.1311.4967
Popis: Consider a symmetrical conflict relationship between the points of a point process. The Mat\'ern type constructions provide a generic way of selecting a subset of this point process which is conflict-free. The simplest one consists in keeping only conflict-free points. There is however a wide class of Mat\'ern type processes based on more elaborate selection rules and providing larger sets of selected points. The general idea being that if a point is discarded because of a given conflict, there is no need to discard other points with which it is also in conflict. The ultimate selection rule within this class is the so called Random Sequential Adsorption, where the cardinality of the sequence of conflicts allowing one to decide whether a given point is selected is not bounded. The present paper provides a sufficient condition on the span of the conflict relationship under which all the above point processes are well defined when the initial point process is Poisson. It then establishes, still in the Poisson case, a set of differential equations satisfied by the probability generating functionals of these Mat\'ern type point processes. Integral equations are also given for the Palm distributions.
Databáze: OpenAIRE