Apelin-13 Regulates Vasopressin-Induced Aquaporin-2 Expression and Trafficking in Kidney Collecting Duct Cells

Autor: Robert Dumaine, Olivier Lesur, Nadia Ekindi, Robert Sabbagh, Chahrazed Boulkeroua, Philippe Sarret, Ahmed Chraibi, Taoufik Khalfaoui, Élie Besserer-Offroy, Mylène Lafrance, Houda Ayari
Rok vydání: 2019
Předmět:
Zdroj: Cellular Physiology and Biochemistry, Vol 53, Iss 4, Pp 687-700 (2019)
ISSN: 1421-9778
1015-8987
DOI: 10.33594/000000165
Popis: Background/aims Apelin and its G protein-coupled receptor APJ (gene symbol Aplnr) are strongly expressed in magnocellular vasopressinergic neurons suggesting that the apelin/APJ system plays a key role at the central level in regulating salt and water balance by counteracting the antiduretic action of vasopressin (AVP). Likewise, recent studies revealed that apelin exerts opposite effects to those of vasopressin induced on water reabsorption via a direct action on the kidney collecting duct. However, the underlying mechanisms of the peripheral action of apelin are not clearly understood. Here, we thus investigated the role of the apelin/APJ system in the regulation of water balance in the kidney, and more specifically its involvement in modulating the function of aquaporin-2 (AQP2) in the collecting duct. Methods Mouse cortical collecting duct cells (mpkCCD) were incubated in the presence of dDAVP and treated with or without apelin-13. Changes in AQP2 expression and localization were determined by immunoblotting and confocal immunofluorescence staining. Results Herein, we showed that the APJ was present in mpkCCD cells. Treatment of mpkCCD with apelin-13 reduced the cAMP production and antagonized the AVP-induced increase in AQP2 mRNA and protein expressions. Immunofluorescent experiments also revealed that the AVP-induced apical cell surface expression of AQP2, and notably its phosphorylated isoform AQP2-pS269, was considerably reduced following apelin-13 application to mpkCCD cells. Conclusion Our data reinforce the aquaretic role of the apelin/APJ system in the fine regulation of body fluid homeostasis at the kidney level and its physiological opposite action to the antiduretic activity of AVP.
Databáze: OpenAIRE