On cohomological Hall algebras of quivers : generators

Autor: Olivier Schiffmann, Eric Vasserot
Přispěvatelé: Laboratoire de Mathématiques d'Orsay (LMO), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2017
Předmět:
Zdroj: Journal für die reine und angewandte Mathematik
Journal für die reine und angewandte Mathematik, Walter de Gruyter, 2020, 2020 (760), pp.59-132. ⟨10.1515/crelle-2018-0004⟩
ISSN: 0075-4102
1435-5345
DOI: 10.48550/arxiv.1705.07488
Popis: We study the cohomological Hall algebra Y of a lagrangian substack of the moduli stack of representations of the preprojective algebra of an arbitrary quiver Q, and their actions on the cohomology of Nakajima quiver varieties. We prove that Y is pure and we compute its Poincare polynomials in terms of (nilpotent) Kac polynomials. We also provide a family of algebra generators. We conjecture that Y is equal, after a suitable extension of scalars, to the Yangian introduced by Maulik and Okounkov. As a corollary, we prove a variant of Okounkov's conjecture, which is a generalization of the Kac conjecture relating the constant term of Kac polynomials to root multiplicities of Kac-Moody algebras.
Comment: 69 pages
Databáze: OpenAIRE