Independence of Iterated Whitehead Doubles
Autor: | Juanita Pinzón-Caicedo |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Group (mathematics)
Applied Mathematics General Mathematics Fibered knot Geometric Topology (math.GT) Cobordism Torus Homology (mathematics) Mathematics::Algebraic Topology Mathematics::Geometric Topology 57M25 57N70 57Q60 Combinatorics Mathematics - Geometric Topology Iterated function Mathematics::K-Theory and Homology FOS: Mathematics Independence (mathematical logic) Mathematics::Symplectic Geometry Mathematics |
Popis: | A theorem of Furuta and Fintushel-Stern provides a criterion for a collection of Seifert fibred homology spheres to be independent in the homology cobordism group of oriented homology 3-spheres. In this article we use these results and some 4-dimensional constructions to produce infinite families of positive torus knots whose iterated Whitehead doubles are independent in the smooth concordance group. |
Databáze: | OpenAIRE |
Externí odkaz: |