Analysis of the Snow Water Equivalent at the AEMet-Formigal Field Laboratory (Spanish Pyrenees) During the 2019/2020 Winter Season Using a Stepped-Frequency Continuous Wave Radar (SFCW)
Autor: | Samuel T. Buisan, Rafael Alonso, Jose Maria Garcia del Pozo, Jose Adolfo alvarez |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
010504 meteorology & atmospheric sciences
stepped-frequency continuous wave radar 02 engineering and technology snow 01 natural sciences law.invention Radar engineering details law 0202 electrical engineering electronic engineering information engineering Radar Water cycle lcsh:Science SWE SDR 0105 earth and related environmental sciences Remote sensing snowpack multilayer reflectance software defined radio Elevation SFCW 020206 networking & telecommunications Snowpack Snow Continuous-wave radar snow water equivalent General Earth and Planetary Sciences Environmental science Continuous wave lcsh:Q |
Zdroj: | Remote Sensing Volume 13 Issue 4 Remote Sensing, Vol 13, Iss 616, p 616 (2021) Zaguán: Repositorio Digital de la Universidad de Zaragoza Universidad de Zaragoza Zaguán. Repositorio Digital de la Universidad de Zaragoza instname |
ISSN: | 2072-4292 |
DOI: | 10.3390/rs13040616 |
Popis: | Snow makes a great contribution to the hydrological cycle in cold regions. The parameter to characterize available the water from the snow cover is the well-known snow water equivalent (SWE). This paper presents a near-surface-based radar for determining the SWE from the measured complex spectral reflectance of the snowpack. The method is based in a stepped-frequency continuous wave radar (SFCW), implemented in a coherent software defined radio (SDR), in the range from 150 MHz to 6 GHz. An electromagnetic model to solve the electromagnetic reflectance of a snowpack, including the frequency and wetness dependence of the complex relative dielectric permittivity of snow layers, is shown. Using the previous model, an approximated method to calculate the SWE is proposed. The results are presented and compared with those provided by a cosmic-ray neutron SWE gauge over the 2019–2020 winter in the experimental AEMet Formigal-Sarrios test site. This experimental field is located in the Spanish Pyrenees at an elevation of 1800 m a.s.l. The results suggest the viability of the approximate method. Finally, the feasibility of an auxiliary snow height measurement sensor based on a 120 GHz frequency modulated continuous wave (FMCW) radar sensor, is shown. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |