Fasciculography: Robust Prior-Free Real-Time Normalized Volumetric Neural Tract Parcellation
Autor: | Fei Wang, Lawrence H. Staib, Xenophon Papademetris, Hon Pong Ho, Hilary P. Blumberg |
---|---|
Rok vydání: | 2012 |
Předmět: |
Normalization (statistics)
Computer science cvg.game_series Fiber tract Image registration Initialization Iterative reconstruction Nerve Fibers Myelinated Sensitivity and Specificity Article Pattern Recognition Automated White matter Imaging Three-Dimensional Computer Systems Image Interpretation Computer-Assisted medicine Humans Computer vision Electrical and Electronic Engineering cvg Radiological and Ultrasound Technology medicine.diagnostic_test business.industry Brain Reproducibility of Results Magnetic resonance imaging Pattern recognition Image segmentation Image Enhancement Computer Science Applications Diffusion Tensor Imaging medicine.anatomical_structure Neural tract Artificial intelligence business Algorithms Software Diffusion MRI |
Zdroj: | IEEE Transactions on Medical Imaging. 31:217-230 |
ISSN: | 1558-254X 0278-0062 |
DOI: | 10.1109/tmi.2011.2167629 |
Popis: | Fiber tracking in diffusion tensor magnetic resonance images (DTIs) reveals 3-D structural connectivity of the brain conveniently and thus is a viable tool for investigating neural differences. Unfortunately, local noise, image artifacts and numerical tracking errors during integration-based techniques are cumulative. Prematurely terminated fibers and under-sampled fiber bundles result in incomplete reconstruction of white matter fiber tracts and hence incorrect anatomical measurements. Quantitative cross-subject tract analysis, which is critical for abnormality detection, is complicated by inefficient and inaccurate tract reconstruction and normalization from fiber bundles. Because of the above problems, we propose a parcellation method that aims for lower sensitivity to initialization and local orientation error by directly segmenting full white matter tracts (Fasciculography), rather than reconstructing individual curves, from diffusion tensor fields. A fast, robust volumetric, and intrinsically normalized solution is achieved by noise-filtering using a generic parametrized tract model to prevent premature tract termination. At the same time, orientation information reduces the search space, significantly speeding up the tract parcellation process with less human intervention. Detailed comparisons against streamline tracking, shortest-path tracking, and nonrigid registration using synthetic and real DTIs confirmed the superior properties of Fasciculography. Since a normalized tract can be delineated interactively in a just few seconds using the proposed method, accurate high volume tract comparisons become feasible. |
Databáze: | OpenAIRE |
Externí odkaz: |