Bootstrapping the $ \mathcal{N} $ = 1 Wess-Zumino models in three dimensions
Autor: | Junchen Rong, Ning Su |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
High Energy Physics - Theory
Nuclear and High Energy Physics dimension: 3 supersymmetry: 1 FOS: Physical sciences QC770-798 Scaling dimension Lie [group] Supersymmetric Gauge Theory group: Lie Combinatorics High Energy Physics::Theory Wess-Zumino model Nuclear and particle physics. Atomic energy. Radioactivity unitarity 1 [supersymmetry] ddc:530 Tensor Invariant (mathematics) bootstrap Special unitary group dimension [scaling] SU(N) scaling: dimension Physics Conformal Field Theory Conformal field theory Mathematics::Operator Algebras Lie group Permutation group Mathematics::Spectral Theory field equations recombination High Energy Physics - Theory (hep-th) fixed point 3 [dimension] Critical exponent |
Zdroj: | Journal of high energy physics 06(6), 153 (2021). doi:10.1007/JHEP06(2021)153 1-19 (2019). doi:10.3204/PUBDB-2020-04072 Journal of High Energy Physics Journal of High Energy Physics, Vol 2021, Iss 6, Pp 1-22 (2021) |
DOI: | 10.1007/JHEP06(2021)153 |
Popis: | Journal of high energy physics 06(6), 153 (2021). doi:10.1007/JHEP06(2021)153 Using numerical bootstrap method, we determine the critical exponents of the minimal three-dimensional $ \mathcal{N} $ = 1 Wess-Zumino models with cubic superpotetential $ \mathcal{W}\sim {d}_{ijk}{\Phi}^i{\Phi}^j{\Phi}^k $. The tensor d$_{ijk}$ is taken to be the invariant tensor of either permutation group S$_{N}$, special unitary group SU(N), or a series of groups called F$_{4}$ family of Lie groups. Due to the equation of motion, at the Wess-Zumino fixed point, the operator d$_{ijk}$��$^{j}$��$^{k}$ is a (super)descendant of ��$^{i}$. We observe such super-multiplet recombination in numerical bootstrap, which allows us to determine the scaling dimension of the super-field ���$_{��}$. Published by SISSA, [Trieste] |
Databáze: | OpenAIRE |
Externí odkaz: |