Bootstrapping the $ \mathcal{N} $ = 1 Wess-Zumino models in three dimensions

Autor: Junchen Rong, Ning Su
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Journal of high energy physics 06(6), 153 (2021). doi:10.1007/JHEP06(2021)153
1-19 (2019). doi:10.3204/PUBDB-2020-04072
Journal of High Energy Physics
Journal of High Energy Physics, Vol 2021, Iss 6, Pp 1-22 (2021)
DOI: 10.1007/JHEP06(2021)153
Popis: Journal of high energy physics 06(6), 153 (2021). doi:10.1007/JHEP06(2021)153
Using numerical bootstrap method, we determine the critical exponents of the minimal three-dimensional $ \mathcal{N} $ = 1 Wess-Zumino models with cubic superpotetential $ \mathcal{W}\sim {d}_{ijk}{\Phi}^i{\Phi}^j{\Phi}^k $. The tensor d$_{ijk}$ is taken to be the invariant tensor of either permutation group S$_{N}$, special unitary group SU(N), or a series of groups called F$_{4}$ family of Lie groups. Due to the equation of motion, at the Wess-Zumino fixed point, the operator d$_{ijk}$��$^{j}$��$^{k}$ is a (super)descendant of ��$^{i}$. We observe such super-multiplet recombination in numerical bootstrap, which allows us to determine the scaling dimension of the super-field ���$_{��}$.
Published by SISSA, [Trieste]
Databáze: OpenAIRE