Automatic Android Deprecated-API Usage Update by Learning from Single Updated Example

Autor: Stefanus Agus Haryono, Ferdian Thung, Lingxiao Jiang, Gilles Muller, Hong Jin Kang, David Lo, Lucas Serrano, Julia Lawall
Přispěvatelé: Singapore Management University (SIS), Singapore Management University, Well Honed Infrastructure Software for Programming Environments and Runtimes ( Whisper), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-LIP6, Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), ANR-16-CE25-0012,ITrans,Inférence automatique de règles de transformation pour le portage des logiciels d'infrastructure patrimoniaux(2016), Well Honed Infrastructure Software for Programming Environments and Runtimes (Whisper)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: ICPC 2020-28th IEEE/ACM International Conference on Program Comprehension-ERA track
ICPC 2020-28th IEEE/ACM International Conference on Program Comprehension-ERA track, Jul 2020, Seoul / Virtual, South Korea. ⟨10.1145/3387904.3389285⟩
ICPC
Popis: Due to the deprecation of APIs in the Android operating system,developers have to update usages of the APIs to ensure that their applications work for both the past and current versions of Android.Such updates may be widespread, non-trivial, and time-consuming. Therefore, automation of such updates will be of great benefit to developers. AppEvolve, which is the state-of-the-art tool for automating such updates, relies on having before- and after-update examples to learn from. In this work, we propose an approach named CocciEvolve that performs such updates using only a single after-update example. CocciEvolve learns edits by extracting the relevant update to a block of code from an after-update example. From preliminary experiments, we find that CocciEvolve can successfully perform 96 out of 112 updates, with a success rate of 85%.
5 pages, 8 figures. Accepted in The International Conference on Program Comprehension (ICPC) 2020, ERA Track
Databáze: OpenAIRE