Microfluidic-induced growth and shape-up of three-dimensional extended arrays of densely packed nanoparticles
Autor: | Sivasankaran Prathap Chandran, Anthony Désert, Aurélie Le Beulze, Mona Tréguer-Delapierre, Jean-Baptiste Salmon, Antonio Iazzolino, Miguel A. Correa-Duarte, Jacques Leng, Virginie Ponsinet, Julie Angly, Stéphane Mornet |
---|---|
Přispěvatelé: | Laboratoire du Futur (LOF), Université Sciences et Technologies - Bordeaux 1-RHODIA-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre de recherches Paul Pascal (CRPP), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université de Bordeaux (UB), Departamento de Quimica Fisica, Universidade de Vigo |
Jazyk: | angličtina |
Rok vydání: | 2013 |
Předmět: |
Materials science
Microfluidics General Engineering Evaporation General Physics and Astronomy Nanoparticle Ionic bonding Nanotechnology Heterojunction [CHIM.MATE]Chemical Sciences/Material chemistry 02 engineering and technology Extended arrays 010402 general chemistry 021001 nanoscience & nanotechnology 01 natural sciences 0104 chemical sciences Suspension (chemistry) Colloid Chemical physics General Materials Science 0210 nano-technology Dispersion (chemistry) Microfluidic-induced growth Densley packed nanoparticles |
Zdroj: | ACS Nano ACS Nano, American Chemical Society, 2013, 7 (8), pp.6465-6477. ⟨10.1021/nn401764r⟩ |
ISSN: | 1936-0851 |
Popis: | International audience; We use evaporation within a microfluidic device to extract the solvent of a (possibly very dilute) dispersion of nanoparticles and concentrate the dispersion until a solid made of densely packed nanoparticles grows and totally invades the microfluidic geometry. The growth process can be rationalized as an interplay between evaporation-induced flow and kinetic and thermodynamic coefficients which are system-dependent; this yields limitations to the growth process illustrated here on two main cases: evaporation- and transport-limited growth. Importantly, we also quantify how colloidal stability may hinder the growth and show that care must be taken as to the composition of the initial dispersion, especially regarding traces of ionic species that can destabilize the suspension upon concentration. We define a stability chart, which, when fulfilled, permits us to grow and shape-up solids, including superlattices and extended and thick arrays of nanoparticles made of unary and binary dispersions, composites, and heterojunctions between distinct types of nanoparticles. In all cases, the geometry of the final solid is imparted by that of the microfluidic device. |
Databáze: | OpenAIRE |
Externí odkaz: |