Horizon geometry for Kerr black holes with synchronized hair
Autor: | Eugen Radu, Carlos A. R. Herdeiro, Jorge F. M. Delgado |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
High Energy Physics - Theory
Physics 010308 nuclear & particles physics Horizon Astrophysics::High Energy Astrophysical Phenomena Scalar (mathematics) FOS: Physical sciences Geometry General Relativity and Quantum Cosmology (gr-qc) Parameter space 01 natural sciences General Relativity and Quantum Cosmology Sphericity High Energy Physics - Theory (hep-th) 0103 physical sciences 010306 general physics Isometric embedding Dimensionless quantity |
Zdroj: | Repositório Científico de Acesso Aberto de Portugal Repositório Científico de Acesso Aberto de Portugal (RCAAP) instacron:RCAAP Physical Review D |
Popis: | We study the horizon geometry of Kerr black holes (BHs) with scalar synchronised hair, a family of solutions of the Einstein-Klein-Gordon system that continuously connects to vacuum Kerr BHs. We identify the region in parameter space wherein a global isometric embedding in Euclidean 3-space, $\mathbb{E}^3$, is possible for the horizon geometry of the hairy BHs. For the Kerr case, such embedding is possible iff the horizon dimensionless spin $j_H$ (which equals the total dimensionless spin, $j$), the sphericity $\mathfrak{s}$ and the horizon linear velocity $v_H$ are smaller than critical values, $j^{\rm (S)},\mathfrak{s}^{\rm (S)}, v_H^{\rm (S)}$, respectively. For the hairy BHs, we find that $j_H Comment: 12 pages, 6 figures |
Databáze: | OpenAIRE |
Externí odkaz: |