Horizon geometry for Kerr black holes with synchronized hair

Autor: Eugen Radu, Carlos A. R. Herdeiro, Jorge F. M. Delgado
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Physical Review D
Popis: We study the horizon geometry of Kerr black holes (BHs) with scalar synchronised hair, a family of solutions of the Einstein-Klein-Gordon system that continuously connects to vacuum Kerr BHs. We identify the region in parameter space wherein a global isometric embedding in Euclidean 3-space, $\mathbb{E}^3$, is possible for the horizon geometry of the hairy BHs. For the Kerr case, such embedding is possible iff the horizon dimensionless spin $j_H$ (which equals the total dimensionless spin, $j$), the sphericity $\mathfrak{s}$ and the horizon linear velocity $v_H$ are smaller than critical values, $j^{\rm (S)},\mathfrak{s}^{\rm (S)}, v_H^{\rm (S)}$, respectively. For the hairy BHs, we find that $j_H
Comment: 12 pages, 6 figures
Databáze: OpenAIRE