Hopf-Galois module structure of quartic Galois extensions of Q

Autor: Daniel Gil-Muñoz, Anna Rio
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. TN - Grup de Recerca en Teoria de Nombres
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Popis: © 2022 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Given a quartic Galois extension L/Q of number fields and a Hopf-Galois structure H on L/Q, we study the freeness of the ring of integers OL as module over the associated order AH in H. For the classical Galois structure Hc, we know by Leopoldt’s theorem that OL is AHc -free. If L/Q is cyclic, it admits a unique non-classical Hopf-Galois structure, whereas if it is biquadratic, it admits three such Hopf-Galois structures. In both cases, we obtain that freeness depends on the solvability in Z of certain generalized Pell equations. We shall translate some results on Pell equations into results on the AH-freeness of OL.
Databáze: OpenAIRE