Dynamical Equilibrium in the Molecular ISM in 28 Nearby Star-Forming Galaxies
Autor: | Daniel A. Dale, Kathryn Grasha, Sharon Meidt, Jiayi Sun, Eve C. Ostriker, Alberto D. Bolatto, I-Da Chiang, Karin Sandstrom, Janice C. Lee, Eric Emsellem, Toshiki Saito, Jonathan D. Henshaw, Dyas Utomo, Cinthya N. Herrera, Antonio Usero, Erik Rosolowsky, Simon C. O. Glover, Frank Bigiel, Jérôme Pety, Annie Hughes, Andreas Schruba, María J. Jiménez-Donaire, Christopher Faesi, Miguel Querejeta, Guillermo A. Blanc, Mélanie Chevance, J. M. Diederik Kruijssen, Adam K. Leroy, Eva Schinnerer |
---|---|
Přispěvatelé: | Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
010504 meteorology & atmospheric sciences
Interstellar dynamics Funding grant FOS: Physical sciences Library science Astrophysics::Cosmology and Extragalactic Astrophysics PRESSURE MASS 01 natural sciences MAGNETIC-FIELDS Atomic energy commission German 3-DIMENSIONAL DISTRIBUTION 0103 physical sciences 010303 astronomy & astrophysics Astrophysics::Galaxy Astrophysics 0105 earth and related environmental sciences Physics INTERSTELLAR-MEDIUM European research Star formation CLOUDS GAS CONTENT Astronomy and Astrophysics Interstellar molecules Astrophysics - Astrophysics of Galaxies language.human_language Physics and Astronomy [SDU]Sciences of the Universe [physics] 13. Climate action Space and Planetary Science Astrophysics of Galaxies (astro-ph.GA) SUPERNOVA FEEDBACK language MILKY-WAY TURBULENCE |
Zdroj: | ASTROPHYSICAL JOURNAL The Astrophysical Journal The Astrophysical Journal, 2020, 892, ⟨10.3847/1538-4357/ab781c⟩ |
ISSN: | 0004-637X 1538-4357 1538-3881 1538-3873 0067-0049 0004-6361 |
DOI: | 10.3847/1538-4357/ab781c⟩ |
Popis: | We compare the observed turbulent pressure in molecular gas, $P_\mathrm{turb}$, to the required pressure for the interstellar gas to stay in equilibrium in the gravitational potential of a galaxy, $P_\mathrm{DE}$. To do this, we combine arcsecond resolution CO data from PHANGS-ALMA with multi-wavelength data that traces the atomic gas, stellar structure, and star formation rate (SFR) for 28 nearby star-forming galaxies. We find that $P_\mathrm{turb}$ correlates with, but almost always exceeds the estimated $P_\mathrm{DE}$ on kiloparsec scales. This indicates that the molecular gas is over-pressurized relative to the large-scale environment. We show that this over-pressurization can be explained by the clumpy nature of molecular gas; a revised estimate of $P_\mathrm{DE}$ on cloud scales, which accounts for molecular gas self-gravity, external gravity, and ambient pressure, agrees well with the observed $P_\mathrm{turb}$ in galaxy disks. We also find that molecular gas with cloud-scale ${P_\mathrm{turb}}\approx{P_\mathrm{DE}}\gtrsim{10^5\,k_\mathrm{B}\,\mathrm{K\,cm^{-3}}}$ in our sample is more likely to be self-gravitating, whereas gas at lower pressure appears more influenced by ambient pressure and/or external gravity. Furthermore, we show that the ratio between $P_\mathrm{turb}$ and the observed SFR surface density, $\Sigma_\mathrm{SFR}$, is compatible with stellar feedback-driven momentum injection in most cases, while a subset of the regions may show evidence of turbulence driven by additional sources. The correlation between $\Sigma_\mathrm{SFR}$ and kpc-scale $P_\mathrm{DE}$ in galaxy disks is consistent with the expectation from self-regulated star formation models. Finally, we confirm the empirical correlation between molecular-to-atomic gas ratio and kpc-scale $P_\mathrm{DE}$ reported in previous works. Comment: 28 pages + 3 appendices, ApJ in press. See https://www.youtube.com/watch?v=qxkd-RXB0Ek for a short video describing the main results. Data tables available at https://www.canfar.net/storage/list/phangs/RELEASES/Sun_etal_2020 prior to publication |
Databáze: | OpenAIRE |
Externí odkaz: |