Preparation and Modification of Polydopamine Boron Nitride—Titanium Dioxide Nanohybrid Particles Incorporated into Zinc Phosphating Bath to Enhance Corrosion Performance of Zinc Phosphate-Silane Coated Q235 Steel

Autor: Mustafa Muhammad, Ruina Ma, An Du, Yongzhe Fan, Xue Zhao, Xiaoming Cao
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Materials; Volume 16; Issue 10; Pages: 3835
ISSN: 1996-1944
DOI: 10.3390/ma16103835
Popis: In this work, PDA@BN-TiO2 nanohybrid particles were incorporated chemically into a zinc-phosphating solution to form a robust, low-temperature phosphate-silane coating on Q235 steel specimens. The morphology and surface modification of the coating was characterized by X-Ray Diffraction (XRD), X-ray Spectroscopy (XPS), Fourier-transform infrared spectroscopy (FT-IR), and Scanning electron microscopy (SEM). Results demonstrate that the incorporation of PDA@BN-TiO2 nanohybrids produced a higher number of nucleation sites and reduced grain size with a denser, more robust, and more corrosion-resistant phosphate coating compared to pure coating. The coating weight results showed that the PBT-0.3 sample achieved the densest and most uniform coating (38.2 g/m2). The potentiodynamic polarization results showed that the PDA@BN-TiO2 nanohybrid particles increased phosphate-silane films’ homogeneity and anti-corrosive capabilities. The 0.3 g/L sample exhibits the best performance with an electric current density of 1.95 × 10−5 A/cm2, an order of magnitude lower than that of the pure coatings. Electrochemical impedance spectroscopy revealed that PDA@BN-TiO2 nanohybrids provided the greatest corrosion resistance compared to pure coatings. The corrosion time for copper sulfate in samples containing PDA@BN/TiO2 prolonged to 285 s, a significantly higher amount of time than the corrosion time found in pure samples.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje