Automated coordination corrected enthalpies with AFLOW-CCE

Autor: David Hicks, Michael J. Mehl, Corey Oses, Rico Friedrich, Cormac Toher, Stefano Curtarolo, M. J. Brenner, Marco Esters, S. Ki
Rok vydání: 2021
Předmět:
Zdroj: Physical Review Materials 5(2021), 043803
ISSN: 2475-9953
DOI: 10.1103/physrevmaterials.5.043803
Popis: The computational design of materials with ionic bonds poses a critical challenge to thermodynamic modeling since density functional theory yields inaccurate predictions of their formation enthalpies. Progress requires leveraging physically insightful correction methods. The recently introduced coordination corrected enthalpies (CCE) method delivers accurate formation enthalpies with mean absolute errors close to room temperature thermal energy, i.e., 25meV/atom. The CCE scheme, depending on the number of cation-anion bonds and oxidation state of the cation, requires an automated analysis of the system to determine and apply the correction. Here, we present AFLOW-CCE -- our implementation of CCE into the AFLOW framework for computational materials design. It features a command line tool, a web interface and a Python environment. The workflow includes a structural analysis, automatically determines oxidation numbers, and accounts for temperature effects by parametrizing vibrational contributions to the formation enthalpy per bond.
Comment: 11 pages, 4 figures, 2 tables
Databáze: OpenAIRE