Structural and dynamic origins of ESR lineshapes in spin-labeled GB1 domain: the insights from spin dynamics simulations based on long MD trajectories
Autor: | Sunil Saxena, Ivan S. Podkorytov, Sevastyan O. Rabdano, Nikolai R. Skrynnikov, Zikri Hasanbasri, Sergei A. Izmailov |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
0301 basic medicine
Steric effects lcsh:Medicine Dihedral angle 010402 general chemistry 01 natural sciences Molecular physics Article Spectral line Computational biophysics 03 medical and health sciences Protein structure Spin label lcsh:Science Structure determination Protein secondary structure Physics Multidisciplinary lcsh:R Time evolution Proteins Site-directed spin labeling Molecular biophysics 0104 chemical sciences 030104 developmental biology lcsh:Q Solution-state NMR |
Zdroj: | Scientific Reports, Vol 10, Iss 1, Pp 1-18 (2020) Scientific Reports |
ISSN: | 2045-2322 |
Popis: | Site-directed spin labeling (SDSL) ESR is a valuable tool to probe protein systems that are not amenable to characterization by x-ray crystallography, NMR or EM. While general principles that govern the shape of SDSL ESR spectra are known, its precise relationship with protein structure and dynamics is still not fully understood. To address this problem, we designed seven variants of GB1 domain bearing R1 spin label and recorded the corresponding MD trajectories (combined length 180 μs). The MD data were subsequently used to calculate time evolution of the relevant spin density matrix and thus predict the ESR spectra. The simulated spectra proved to be in good agreement with the experiment. Further analysis confirmed that the spectral shape primarily reflects the degree of steric confinement of the R1 tag and, for the well-folded protein such as GB1, offers little information on local backbone dynamics. The rotameric preferences of R1 side chain are determined by the type of the secondary structure at the attachment site. The rotameric jumps involving dihedral angles χ1 and χ2 are sufficiently fast to directly influence the ESR lineshapes. However, the jumps involving multiple dihedral angles tend to occur in (anti)correlated manner, causing smaller-than-expected movements of the R1 proxyl ring. Of interest, ESR spectra of GB1 domain with solvent-exposed spin label can be accurately reproduced by means of Redfield theory. In particular, the asymmetric character of the spectra is attributable to Redfield-type cross-correlations. We envisage that the current MD-based, experimentally validated approach should lead to a more definitive, accurate picture of SDSL ESR experiments. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |