Channel-based algebraic limits to conductive heat transfer
Autor: | Sean Molesky, Prashanth S. Venkataram, Alejandro W. Rodriguez, Juan Carlos Cuevas |
---|---|
Přispěvatelé: | UAM. Departamento de Física Teórica de la Materia Condensada |
Rok vydání: | 2020 |
Předmět: |
CHT
Molecular junction Phonon Non-equilibrium thermodynamics Linear regime FOS: Physical sciences 02 engineering and technology Conduction Electron 01 natural sciences RHT 0103 physical sciences Mesoscale and Nanoscale Physics (cond-mat.mes-hall) Statistical physics 80A99 Algebraic number 010306 general physics Eigenvalues and eigenvectors Physics Condensed Matter - Mesoscale and Nanoscale Physics Física Heat Transfer 021001 nanoscience & nanotechnology Thermal conduction Thermal radiation 0210 nano-technology |
Zdroj: | Biblos-e Archivo. Repositorio Institucional de la UAM instname |
DOI: | 10.48550/arxiv.2006.00932 |
Popis: | Recent experimental advances probing coherent phonon and electron transport in nanoscale devices at contact have motivated theoretical channel-based analyses of conduction based on the nonequilibrium Green's function formalism. The transmission through each channel has been known to be bounded above by unity, yet actual transmissions in typical systems often fall far below these limits. Building upon recently derived radiative heat transfer limits and a unified formalism characterizing heat transport for arbitrary bosonic systems in the linear regime, we propose new bounds on conductive heat transfer. In particular, we demonstrate that our limits are typically far tighter than the Landauer limits per channel and are close to actual transmission eigenvalues by examining a model of phonon conduction in a 1-dimensional chain. Our limits have ramifications for designing molecular junctions to optimize conduction. Comment: 10 pages, 2 figures, 2 appendices |
Databáze: | OpenAIRE |
Externí odkaz: |