metaVaR: introducing metavariant species models for reference-free metagenomic-based population genomics

Autor: Pierre Peterlongo, Christophe Ambroise, Mohammed-Amin Madoui, Romuald Laso-Jadart
Přispěvatelé: Génomique métabolique (UMR 8030), Genoscope - Centre national de séquençage [Evry] (GENOSCOPE), Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), Université d'Évry-Val-d'Essonne (UEVE)-ENSIIE-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université d'Évry-Val-d'Essonne (UEVE), Université d'Évry-Val-d'Essonne (UEVE)-ENSIIE-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Transcriptome
Population genomics
0302 clinical medicine
Invertebrate Genomics
Natural Selection
Cluster Analysis
0303 health sciences
education.field_of_study
Multidisciplinary
Natural selection
Bacterial Genomics
Applied Mathematics
Simulation and Modeling
Microbial Genetics
Genomics
Physical Sciences
[SDE]Environmental Sciences
Medicine
Algorithms
Research Article
Evolutionary Processes
Science
Population
Single-nucleotide polymorphism
Sequence alignment
Computational biology
Microbial Genomics
Biology
Research and Analysis Methods
Microbiology
03 medical and health sciences
Clustering Algorithms
Genetics
Bacterial Genetics
Selection
Genetic

Cluster analysis
education
030304 developmental biology
Evolutionary Biology
Models
Genetic

Computational Biology
Genetic Variation
Biology and Life Sciences
Bacteriology
Genome Analysis
Genetics
Population

Metagenomics
Animal Genomics
[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM]
[SDE.BE]Environmental Sciences/Biodiversity and Ecology
030217 neurology & neurosurgery
Software
Mathematics
Reference genome
Zdroj: PLoS ONE, Vol 15, Iss 12, p e0244637 (2020)
PLoS ONE
PLoS ONE, Public Library of Science, 2020, ⟨10.1371/journal.pone.0244637⟩
PLoS ONE, 2020, ⟨10.1371/journal.pone.0244637⟩
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0244637⟩
Popis: MotivationThe availability of large metagenomic data offers great opportunities for the population genomic analysis of uncultured organisms, especially for small eukaryotes that represent an important part of the unexplored biosphere while playing a key ecological role. However, the majority of these species lacks reference genome or transcriptome which constitutes a technical barrier for classical population genomic analyses.ResultsWe introduce the metavariant species (MVS) model, a representation of the species only by intra-species nucleotide polymorphism. We designed a method combining reference-free variant calling, multiple density-based clustering and maximum weighted independent set algorithms to cluster intra-species variant into MVS directly from multisample metagenomic raw reads without reference genome or reads assembly. The frequencies of the MVS variants are then used to compute population genomic statistics such asFSTin order to estimate genomic differentiation between populations and to identify loci under natural selection. The MVSs construction was tested on simulated and real metagenomic data. MVs showed the required quality for robust population genomics and allowed an accurate estimation of genomic differentiation (ΔFST<0.0001 and < 0.03 on simulated and real data respectively). Loci predicted under natural selection on real data were all found by MVSs. MVSs represent a new paradigm that may simplify and enhance holistic approaches for population genomics and evolution of microorganisms.AvailabilityThe method was implemented in a R package,metaVaR.https://github.com/madoui/MetaVaRContactamadoui@genoscope.cns.fr
Databáze: OpenAIRE