Resource Allocation for Hybrid RF/FSO Multi-Channel Multi-Radio Wireless Mesh Networks
Autor: | Jiadong Zhang, Wenxiao Shi, Yan Zhao, Wei Liu, Hanyang Shi, Zhuo Wang |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Optimization problem
General Computer Science Computer science hybrid RF/FSO networks Throughput 02 engineering and technology 020210 optoelectronics & photonics 0202 electrical engineering electronic engineering information engineering General Materials Science Fading Resource allocation Wireless mesh network Channel allocation schemes Wireless network business.industry Topology control General Engineering 020206 networking & telecommunications wireless mesh networks Network planning and design multi-channel multi-radio lcsh:Electrical engineering. Electronics. Nuclear engineering business mixed integer linear program lcsh:TK1-9971 Computer network |
Zdroj: | IEEE Access, Vol 8, Pp 9358-9370 (2020) |
ISSN: | 2169-3536 |
Popis: | The overwhelming data rates in next generation wireless networks impose a burden on the high-capacity network planning. One promising strategy to meet the demand for high-capacity communications is to augment radio frequency (RF) based multi-channel multi-radio (MCMR) wireless mesh network (WMN) by free-space optics (FSO). In this paper, we construct a hybrid RF/FSO MCMR WMN topology and address its resource allocation (RA) problem in terms of interface assignment, channel allocation, routing, FSO link allocation, and topology control. Considering the weather effects on FSO link availability and the fading nature of RF links, the RA problem is formulated as a two-stage optimization problem with the objective of maximizing the network throughput. In our optimization model, we formulate each stage as a mixed integer linear program, and the bottleneck RF links are gradually upgraded by FSO links. To avoid the computational complexity of the second stage optimization, an improved iterated local search algorithm is proposed. Simulation results show that our RA scheme is efficient and the throughput can be enhanced dramatically by proper FSO link augmentation. |
Databáze: | OpenAIRE |
Externí odkaz: |