Smallest Percolating Sets in Bootstrap Percolation on Grids

Autor: Thomas Shelton, Michał Przykucki
Rok vydání: 2020
Předmět:
Zdroj: The Electronic Journal of Combinatorics. 27
ISSN: 1077-8926
Popis: In this paper we fill in a fundamental gap in the extremal bootstrap percolation literature, by providing the first proof of the fact that for all $d \geq 1$, the size of the smallest percolating sets in $d$-neighbour bootstrap percolation on $[n]^d$, the $d$-dimensional grid of size $n$, is $n^{d-1}$. Additionally, we prove that such sets percolate in time at most $c_d n^2$, for some constant $c_d >0 $ depending on $d$ only.
11 pages, 3 figures
Databáze: OpenAIRE