Popis: |
Mechanisms of drag reduction through shape reconfiguration have been extensively studied on model geometries of plates and beams that deform primarily in bending. Adding an origami crease pattern to such plates produces a distinct class of deformation modes, with large shape changes along selected degrees of freedom. Here, we investigate the impact of those creases on reconfiguration processes and on drag, focusing on the waterbomb base as a generic case. When placed in a uniform airflow, this origami unit folds into a compact structure, whose frontal area collapses with increasing flow velocity. It enhances drag reduction to the point that fluid loading eventually ceases to increase with flow speed, reaching an upper limit. We further show that this limit is adjustable through the origami structural parameters: the stiffness and rest angle of the folds, and their pattern. Experimental results, corroborated by a fluid–elastic theoretical model, point to a scenario consistent with the previous literature: reconfiguration is governed by a dimensionless Cauchy number that measures the competition between fluid loading and elastic resistance to deformation, here embodied in creases. This foldable system yet stands out through the rare passive drag-capping lever it provides, a valuable asset for self-protection in strong wind. |