Bayesian inference of spatially varying Manning’s n coefficients in an idealized coastal ocean model using a generalized Karhunen-Loève expansion and polynomial chaos
Autor: | Omar M. Knio, Olivier Le Maitre, Clint Dawson, Adil Siripatana, Ibrahim Hoteit |
---|---|
Přispěvatelé: | King Abdullah University of Science and Technology (KAUST), Uncertainty Quantification in Scientific Computing and Engineering (PLATON), Centre de Mathématiques Appliquées - Ecole Polytechnique (CMAP), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), University of Texas at Austin [Austin] |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
010504 meteorology & atmospheric sciences
Covariance function MCMC Gaussian Coordinate system Bayesian inference Oceanography 01 natural sciences [SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] symbols.namesake Applied mathematics 14. Life underwater Gaussian process [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography 0105 earth and related environmental sciences Mathematics [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere [STAT.AP]Statistics [stat]/Applications [stat.AP] Polynomial chaos 010505 oceanography Karhunen-Loève expansion Markov chain Monte Carlo Covariance Polynomial Chaos Coastal ocean model Manning's n coefficients symbols |
Zdroj: | Ocean Dynamics Ocean Dynamics, Springer Verlag, 2020, 70 (8), pp.1103-1127. ⟨10.1007/s10236-020-01382-4⟩ Ocean Dynamics, 2020, 70 (8), pp.1103-1127. ⟨10.1007/s10236-020-01382-4⟩ |
ISSN: | 1616-7341 1616-7228 |
DOI: | 10.1007/s10236-020-01382-4⟩ |
Popis: | Bayesian inference with coordinate transformations and polynomial chaos for a Gaussian process with a parametrized prior covariance model was introduced in Sraj et al. (Comput Methods Appl Mech Eng 298:205–228, 2016a) to enable and infer uncertainties in a parameterized prior field. The feasibility of the method was successfully demonstrated on a simple transient diffusion equation. In this work, we adopt a similar approach to infer a spatially varying Manning’s n field in a coastal ocean model. The idea is to view the prior on the Manning’s n field as a stochastic Gaussian field, expressed through a covariance function with uncertain hyper-parameters. A generalized Karhunen-Loeve (KL) expansion, which incorporates the construction of a reference basis of spatial modes and a coordinate transformation, is then applied to the prior field. To improve the computational efficiency of the method proposed in Sraj et al. (Comput Methods Appl Mech Eng 298:205–228, 2016a), we propose to use two polynomial chaos expansions to (i) approximate the coordinate transformation and (ii) build a cheap surrogate of the large-scale advanced circulation (ADCIRC) numerical model. These two surrogates are used to accelerate the Bayesian inference process using a Markov chain Monte Carlo algorithm. Water elevation data are inverted within an observing system simulation experiment framework, based on a realistic ADCIRC model, to infer the KL coordinates and hyper-parameters of a reference 2D Manning’s field. Our results demonstrate the efficiency of the proposed approach and suggest that including the hyper-parameter uncertainties greatly enhances the inferred Manning’s n field, compared with using a covariance with fixed hyper-parameters. |
Databáze: | OpenAIRE |
Externí odkaz: |