Shell-crosslinked knedel-like nanoparticles induce lower immunotoxicity than their non-crosslinked analogs
Autor: | Sandani Samarajeewa, Corrie Clark, Karen L. Wooley, Mahmoud Elsabahy, Jeffery E. Raymond |
---|---|
Rok vydání: | 2013 |
Předmět: |
chemistry.chemical_classification
Biomolecule technology industry and agriculture Biomedical Engineering Nanoparticle Nanotechnology macromolecular substances General Chemistry General Medicine Micelle Article Nanomaterials chemistry.chemical_compound chemistry Copolymer PEGylation Nanomedicine General Materials Science Ethylene glycol |
Zdroj: | Journal of Materials Chemistry B. 1:5241 |
ISSN: | 2050-7518 2050-750X |
DOI: | 10.1039/c3tb20668h |
Popis: | The development of stable nanoparticles that can withstand the changing conditions experienced in a biological setting and also be of low toxicity and immunogenicity is of particular importance to address the problems associated with currently utilized nanotechnology-based therapeutics and diagnostics. The use of crosslinked nanoparticles continues to receive special impetus, due to their robust structure and high kinetic stability, and they have recently been shown to induce lower cytotoxicity than their non-crosslinked micellar counterparts. In the current study, poly(acrylamidoethylamine)-block-poly(DL-lactide) (PAEA90-b-PDLLA40) copolymers were synthesized, self-assembled in water to yield nanoscopic polymeric micelles, and the effects of decorating the micellar surface with poly(ethylene glycol) (i.e. PEGylation) and crosslinking the PAEA layer to varying extents on the physicochemical characteristics, cytotoxicity and immunotoxicity of the nanoparticles were studied. Herein, we report for the first time that crosslinking can efficiently reduce the immunotoxicity of polymeric nanomaterials. In addition, increasing the degree of crosslinking further reduced the accessibility of biomolecules to the core of the nanoparticles and decreased their cytotoxicity and immunotoxicity. It is also highlighted that crosslinking can be more efficient than PEGylation in reducing the immunotoxicity of nanomaterials. Shell-crosslinking of block copolymer micelles, therefore, is expected to advance their clinical development beyond the earlier known effects, and to broaden the implications in the field of nanomedicine. |
Databáze: | OpenAIRE |
Externí odkaz: |