On Geometric Quantization of b^m-symplectic manifolds
Autor: | Jonathan Weitsman, Victor Guillemin, Eva Miranda |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Geometric quantization
Pure mathematics business.industry General Mathematics 010102 general mathematics Matemàtiques i estadística::Topologia::Varietats topològiques [Àrees temàtiques de la UPC] Torus Modular design 01 natural sciences Varietats topològiques symbols.namesake Mathematics - Symplectic Geometry Topological manifolds 0103 physical sciences symbols FOS: Mathematics Symplectic Geometry (math.SG) 010307 mathematical physics 0101 mathematics Hamiltonian (quantum mechanics) business Mathematics::Symplectic Geometry Symplectic geometry Mathematics |
Zdroj: | UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) Springer Berlin Heidelberg |
Popis: | We study the formal geometric quantization of $b^m$-symplectic manifolds equipped with Hamiltonian actions of a torus $T$ with nonzero leading modular weight. The resulting virtual $T$-modules are finite dimensional when $m$ is odd, as in [GMW2]; when $m$ is even, these virtual modules are not finite dimensional, and we compute the asymptotics of the representations for large weight. Comment: 7 pages |
Databáze: | OpenAIRE |
Externí odkaz: |