Computing sharp bounds for hard clustering problems on trees

Autor: Maurizio Maravalle, Bruno Simeone, Isabella Lari
Rok vydání: 2009
Předmět:
Zdroj: Discrete Applied Mathematics. 157:991-1008
ISSN: 0166-218X
DOI: 10.1016/j.dam.2008.03.032
Popis: Clustering problems with relational constraints in which the underlying graph is a tree arise in a variety of applications: hierarchical data base paging, communication and distribution networks, districting, biological taxonomy, and others. They are formulated here as optimal tree partitioning problems. In a previous paper, it was shown that their computational complexity strongly depends on the nature of the objective function and, in particular, that minimizing the total within-cluster dissimilarity or the diameter is computationally hard. We propose heuristics that find good partitions within a reasonable time, even for instances of relatively large size. Such heuristics are based on the solution of continuous relaxations of certain integer (or almost integer) linear programs. Experimental results on over 2000 randomly generated instances with up to 500 entities show that the values (total within-cluster dissimilarity or diameter) of the solutions provided by these heuristics are quite close to the minimum one.
Databáze: OpenAIRE