Symmetry breaking differential operators for tensor products of spinorial representations
Autor: | Khalid Koufany, Universit, Jean-Louis Clerc |
---|---|
Přispěvatelé: | Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Spin group
Clifford module 01 natural sciences Conformal group Combinatorics 0103 physical sciences FOS: Mathematics conformal analysis symmetry breaking differential operators Representation Theory (math.RT) 0101 mathematics Clifford algebra [MATH]Mathematics [math] spinors Mathematical Physics ComputingMilieux_MISCELLANEOUS Physics Spinor [MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] Group (mathematics) 010102 general mathematics tensor product Differential operator 2010 AMS Classification : Primary 43A85. Secondary 58J70 33J45 Tensor product [MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] Primary 43A85 Secondary 58J70 33J45 010307 mathematical physics Geometry and Topology Mathematics - Representation Theory Analysis |
Zdroj: | Symmetry, Integrability and Geometry : Methods and Applications Symmetry, Integrability and Geometry : Methods and Applications, National Academy of Science of Ukraine, 2021, 17 (2021) (049) |
ISSN: | 1815-0659 |
Popis: | Let $\mathbb S$ be a Clifford module for the complexified Clifford algebra $\mathbb{C}\ell(\mathbb R^n)$, $\mathbb S'$ its dual, $\rho$ and $\rho'$ be the corresponding representations of the spin group ${\rm Spin}(n)$. The group $G= {\rm Spin}(1,n+1)$ is a (twofold) covering of the conformal group of $\mathbb R^n$. For $\lambda, \mu\in \mathbb C$, let $\pi_{\rho, \lambda}$ (resp. $\pi_{\rho',\mu}$) be the spinorial representation of $G$ realized on a (subspace of) $C^\infty(\mathbb R^n,\mathbb S)$ (resp. $C^\infty(\mathbb R^n,\mathbb S')$). For $0\leq k\leq n$ and $m\in \mathbb N$, we construct a symmetry breaking differential operator $B_{k;\lambda,\mu}^{(m)}$ from $C^\infty(\mathbb R^n \times \mathbb R^n,\mathbb{S}\,\otimes\, \mathbb{S}')$ into $C^\infty(\mathbb R^n, \Lambda^*_k(\mathbb R^n) \otimes \mathbb{C})$ which intertwines the representations $\pi_{\rho, \lambda}\otimes \pi_{\rho',\mu} $ and $\pi_{\tau^*_k,\lambda+\mu+2m}$, where $\tau^*_k$ is the representation of ${\rm Spin}(n)$ on the space $\Lambda^*_k(\mathbb R^n) \otimes \mathbb{C}$ of complex-valued alternating $k$-forms on $\mathbb{R}^n$. |
Databáze: | OpenAIRE |
Externí odkaz: |